IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p515-528.html
   My bibliography  Save this article

Solar Irradiation Data Processing using estimator MatriceS (SIMS) validated for Portugal (southern Europe)

Author

Listed:
  • Silva, Hugo Gonçalves
  • Abreu, Edgar F.M.
  • Lopes, Francis M.
  • Cavaco, Afonso
  • Canhoto, Paulo
  • Neto, Jorge
  • Collares-Pereira, Manuel

Abstract

Accurate solar resource assessment is essential in all the different phases of solar energy systems design and implementation. On a local scale, the solar resource is best assessed from ground measurements and, if available, with the existence of complete time-series of hourly values for the long-term resource estimation. However, these usually suffer from the occurrence of data gaps that can be as large as several months for remote and/or less maintained stations. Such gaps hinder the correct assessment of solar availability and, for that matter, their filling is a crucial first step to perform an appropriate assessment. In this context, a method for Solar Irradiation Data Processing using estimator MatriceS (SIMS) has been developed and is presented here. The algorithm allows to determine long-term linear correlations between a network of spatially distributed stations and, with these, to identify possible outliers and to fill data gaps through the selection of the median value from the obtained estimations. The method is validated against global horizontal irradiation (GHI) data from a network that comprises 89 ground-measuring stations, being maintained by the Portuguese Meteorology Service (IPMA - Instituto Português do Mar e da Atmosfera), considering a period of 17 years (from 2001 to 2017). Two important assertions are made for coefficients between stations: (1) coefficients only decrease slightly with the distance between stations (with a median reduction of ∼0.0003 km−1), for the considered network; (2) asymptotic long-term coefficients are reached with only one year of data. Taking advantage of the SIMS method, GHI assessment is presented here in the form of availability maps over the Portuguese mainland, with the respective values being listed in a table for future reference. The present assessment confirms that Portugal is a suitable region for the implementation of solar energy systems, with GHI having availabilities up to 2028.4 kWh/m2/year ±3.4% in Sagres (southernmost part of Portugal).

Suggested Citation

  • Silva, Hugo Gonçalves & Abreu, Edgar F.M. & Lopes, Francis M. & Cavaco, Afonso & Canhoto, Paulo & Neto, Jorge & Collares-Pereira, Manuel, 2020. "Solar Irradiation Data Processing using estimator MatriceS (SIMS) validated for Portugal (southern Europe)," Renewable Energy, Elsevier, vol. 147(P1), pages 515-528.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:515-528
    DOI: 10.1016/j.renene.2019.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonanzas-Torres, F. & Cañizares, F. & Perpiñán, O., 2013. "Comparative assessment of global irradiation from a satellite estimate model (CM SAF) and on-ground measurements (SIAR): A Spanish case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 248-261.
    2. Abreu, Edgar F.M. & Canhoto, Paulo & Prior, Victor & Melicio, R., 2018. "Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements," Renewable Energy, Elsevier, vol. 127(C), pages 398-411.
    3. Escobar, Rodrigo A. & Cortés, Cristián & Pino, Alan & Pereira, Enio Bueno & Martins, Fernando Ramos & Cardemil, José Miguel, 2014. "Solar energy resource assessment in Chile: Satellite estimation and ground station measurements," Renewable Energy, Elsevier, vol. 71(C), pages 324-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graça Gomes, João & Jiang, Juan & Chong, Cheng Tung & Telhada, João & Zhang, Xu & Sammarchi, Sergio & Wang, Shuyang & Lin, Yu & Li, Jialong, 2023. "Hybrid solar PV-wind-battery system bidding optimisation: A case study for the Iberian and Italian liberalised electricity markets," Energy, Elsevier, vol. 263(PD).
    2. Ailton M. Tavares & Ricardo Conceição & Francisco M. Lopes & Hugo G. Silva, 2022. "Development of a Simple Methodology Using Meteorological Data to Evaluate Concentrating Solar Power Production Capacity," Energies, MDPI, vol. 15(20), pages 1-27, October.
    3. Prasad, Ramendra & Ali, Mumtaz & Xiang, Yong & Khan, Huma, 2020. "A double decomposition-based modelling approach to forecast weekly solar radiation," Renewable Energy, Elsevier, vol. 152(C), pages 9-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armando Castillejo-Cuberos & José Miguel Cardemil & Rodrigo Escobar, 2021. "Analyzing Regional and Local Changes in Irradiance during the 2019 Total Solar Eclipse in Chile, Using Field Observations and Analytical Modeling," Energies, MDPI, vol. 14(17), pages 1-23, August.
    2. Paulescu, Marius & Badescu, Viorel & Budea, Sanda & Dumitrescu, Alexandru, 2022. "Empirical sunshine-based models vs online estimators for solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Choi, Kelvin, Tsz Hei & Brindley, Helen & Ekins-Daukes, N. & Escobar, Rodrigo, 2021. "Developing automated methods to estimate spectrally resolved direct normal irradiance for solar energy applications," Renewable Energy, Elsevier, vol. 173(C), pages 1070-1086.
    4. Gláucya Daú & Annibal Scavarda & Luiz Felipe Scavarda & Vivianne Julianelli Taveira Portugal, 2019. "The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    5. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.
    6. Parrado, C. & Girard, A. & Simon, F. & Fuentealba, E., 2016. "2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile," Energy, Elsevier, vol. 94(C), pages 422-430.
    7. Polo, J. & Martín, L. & Vindel, J.M., 2015. "Correcting satellite derived DNI with systematic and seasonal deviations: Application to India," Renewable Energy, Elsevier, vol. 80(C), pages 238-243.
    8. Salazar, Germán & Checura Diaz, Miguel S. & Denegri, María J. & Tiba, Chigueru, 2015. "Identification of potential areas to achieve stable energy production using the SWERA database: A case study of northern Chile," Renewable Energy, Elsevier, vol. 77(C), pages 208-216.
    9. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    10. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Antonanzas, J. & Perpiñán-Lamigueiro, O. & Polo, J., 2014. "Towards downscaling of aerosol gridded dataset for improving solar resource assessment, an application to Spain," Renewable Energy, Elsevier, vol. 71(C), pages 534-544.
    11. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    12. Del Hoyo, Mirko & Rondanelli, Roberto & Escobar, Rodrigo, 2020. "Significant decrease of photovoltaic power production by aerosols. The case of Santiago de Chile," Renewable Energy, Elsevier, vol. 148(C), pages 1137-1149.
    13. Simsek, Yeliz & Lorca, Álvaro & Urmee, Tania & Bahri, Parisa A. & Escobar, Rodrigo, 2019. "Review and assessment of energy policy developments in Chile," Energy Policy, Elsevier, vol. 127(C), pages 87-101.
    14. Bessafi, Miloud & Oree, Vishwamitra & Khoodaruth, Abdel & Jumaux, Guillaume & Bonnardot, François & Jeanty, Patrick & Delsaut, Mathieu & Chabriat, Jean-Pierre & Dauhoo, Muhammad Zaid, 2018. "Downscaling solar irradiance using DEM-based model in young volcanic islands with rugged topography," Renewable Energy, Elsevier, vol. 126(C), pages 584-593.
    15. Bessafi, Miloud & Oree, Vishwamitra & Khoodaruth, Abdel & Chabriat, Jean-Pierre, 2020. "Impact of decomposition and kriging models on the solar irradiance downscaling accuracy in regions with complex topography," Renewable Energy, Elsevier, vol. 162(C), pages 1992-2003.
    16. Rojas, Redlich García & Alvarado, Natalia & Boland, John & Escobar, Rodrigo & Castillejo-Cuberos, Armando, 2019. "Diffuse fraction estimation using the BRL model and relationship of predictors under Chilean, Costa Rican and Australian climatic conditions," Renewable Energy, Elsevier, vol. 136(C), pages 1091-1106.
    17. Habte, Aron & Sengupta, Manajit & Gueymard, Christian & Golnas, Anastasios & Xie, Yu, 2020. "Long-term spatial and temporal solar resource variability over America using the NSRDB version 3 (1998–2017)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Lopes, Francis M. & Conceição, Ricardo & Fasquelle, Thomas & Silva, Hugo G. & Salgado, Rui & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Predicted direct solar radiation (ECMWF) for optimized operational strategies of linear focus parabolic-trough systems," Renewable Energy, Elsevier, vol. 151(C), pages 378-391.
    19. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Perpiñán-Lamigueiro, O., 2013. "Evaluation and improvement of empirical models of global solar irradiation: Case study northern Spain," Renewable Energy, Elsevier, vol. 60(C), pages 604-614.
    20. Nematollahi, Omid & Kim, Kyung Chun, 2017. "A feasibility study of solar energy in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 566-579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:515-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.