IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp328-334.html
   My bibliography  Save this article

Experimental investigation of an active thermosyphon solar still with enhanced condenser

Author

Listed:
  • Feilizadeh, Mansoor
  • Estahbanati, M.R. Karimi
  • Khorram, Mohammad
  • Rahimpour, Mohammad Reza

Abstract

In the present work, a new thermosyphon active solar still is presented and experimentally investigated. To propose a simple and reliable alternative for remote regions, evacuated tube solar collectors were used to adsorb solar energy, and an enhanced condenser was employed to increase the rate of distillate production. Taking advantage of a special design, in addition to the collector, water could be poured into the basin and/or condenser. Accordingly, four possible conditions of performance were studied in this work; BECE: empty basin empty condenser, BFCE: filled basin empty condenser, BECF: empty basin filled condenser, BFCF: filled basin filled condenser. Analysis of the results showed the BECE, BFCE, BECF and BFCF cases produced 10.22, 11.86, 15.25 and 16.98 kg/(m2. day) of distillate, respectively. Consequently, it was concluded that filling the condenser effectively decreased the condenser temperature (increased temperature difference between basin and condenser), and caused 46% increase of distillate production. However, filling the basin (increasing evaporation area) enhanced the distillate production by only 14%. In overall, filling both of the basin and condenser simultaneously increased distillate production around 66%. In addition, it was revealed that the efficiencies of BECE, BFCE, BECF and BFCF cases, were 28.2, 34.7, 43.9 and 49.9%, respectively.

Suggested Citation

  • Feilizadeh, Mansoor & Estahbanati, M.R. Karimi & Khorram, Mohammad & Rahimpour, Mohammad Reza, 2019. "Experimental investigation of an active thermosyphon solar still with enhanced condenser," Renewable Energy, Elsevier, vol. 143(C), pages 328-334.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:328-334
    DOI: 10.1016/j.renene.2019.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srithar, K. & Rajaseenivasan, T. & Karthik, N. & Periyannan, M. & Gowtham, M., 2016. "Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator," Renewable Energy, Elsevier, vol. 90(C), pages 157-165.
    2. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    3. Abdessemed, Amina & Bougriou, Cherif & Guerraiche, Djemaa & Abachi, Rabah, 2019. "Effects of tray shape of a multi-stage solar still coupled to a parabolic concentrating solar collector in Algeria," Renewable Energy, Elsevier, vol. 132(C), pages 1134-1140.
    4. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    5. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    6. Arunkumar, T. & Velraj, R. & Denkenberger, D.C. & Sathyamurthy, Ravishankar & Kumar, K. Vinoth & Ahsan, Amimul, 2016. "Productivity enhancements of compound parabolic concentrator tubular solar stills," Renewable Energy, Elsevier, vol. 88(C), pages 391-400.
    7. Jahangiri Mamouri, S. & Gholami Derami, H. & Ghiasi, M. & Shafii, M.B. & Shiee, Z., 2014. "Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still," Energy, Elsevier, vol. 75(C), pages 501-507.
    8. Velmurugan, V. & Srithar, K., 2011. "Performance analysis of solar stills based on various factors affecting the productivity--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1294-1304, February.
    9. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    10. Kabeel, A.E. & Abdelgaied, Mohamed & Eisa, Amr, 2019. "Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still," Renewable Energy, Elsevier, vol. 132(C), pages 119-128.
    11. Ahmed, M.I. & Hrairi, M. & Ismail, A.F., 2009. "On the characteristics of multistage evacuated solar distillation," Renewable Energy, Elsevier, vol. 34(6), pages 1471-1478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Mahmoud Makkiabadi & Siamak Hoseinzadeh & Meysam Majidi Nezhad & Ali Sohani & Daniele Groppi, 2021. "Techno-Economic Study of a New Hybrid Solar Desalination System for Producing Fresh Water in a Hot–Arid Climate," Sustainability, MDPI, vol. 13(22), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang, Wu & Qichang, Yang & Hongfei, Zheng & Yi, Zhang & Hui, Fang & Rihui, Jin, 2019. "Direct utilization of solar linear Fresnel reflector on multi-effect eccentric horizontal tubular still with falling film," Energy, Elsevier, vol. 170(C), pages 170-184.
    2. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    3. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    4. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    5. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    6. Zanganeh, Peyman & Goharrizi, Ataallah Soltani & Ayatollahi, Shahab & Feilizadeh, Mehrzad & Dashti, Hossein, 2020. "Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study," Applied Energy, Elsevier, vol. 268(C).
    7. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    8. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    9. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    10. Kabeel, A.E. & Abdelgaied, Mohamed, 2020. "Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover," Renewable Energy, Elsevier, vol. 146(C), pages 769-775.
    11. Chen, W.L. & Xie, G., 2022. "Performance of multi-stage tubular solar still operating under vacuum," Renewable Energy, Elsevier, vol. 201(P2), pages 34-46.
    12. Bait, Omar & Si–Ameur, Mohamed, 2016. "Numerical investigation of a multi-stage solar still under Batna climatic conditions: Effect of radiation term on mass and heat energy balances," Energy, Elsevier, vol. 98(C), pages 308-323.
    13. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    14. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    18. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.
    19. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    20. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:328-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.