IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp608-618.html
   My bibliography  Save this article

Improving the calibration of building simulation with interpolated weather datasets

Author

Listed:
  • Eguía Oller, Pablo
  • Alonso Rodríguez, José María
  • Saavedra González, Ángeles
  • Arce Fariña, Elena
  • Granada Álvarez, Enrique

Abstract

The building sector offers huge potential for energy savings, which helps to achieve environmental objectives and social benefits. A good approach to determine both the energy consumption of new buildings and the energetic refurbishment of existing buildings is through thermal simulation.

Suggested Citation

  • Eguía Oller, Pablo & Alonso Rodríguez, José María & Saavedra González, Ángeles & Arce Fariña, Elena & Granada Álvarez, Enrique, 2018. "Improving the calibration of building simulation with interpolated weather datasets," Renewable Energy, Elsevier, vol. 122(C), pages 608-618.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:608-618
    DOI: 10.1016/j.renene.2018.01.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Victor José del Campo Díaz & Koldobika Martin Escudero, 2020. "Simulation and Thermo-Energy Analysis of Building Types in the Dominican Republic to Evaluate and Introduce Energy Efficiency in the Envelope," Energies, MDPI, vol. 13(14), pages 1-14, July.
    2. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2021. "Applying the mixed-mode with an adaptive approach to reduce the energy poverty in social dwellings: The case of Spain," Energy, Elsevier, vol. 237(C).
    3. Fu, Xueqian & Zhang, Xiurong, 2019. "Estimation of building energy consumption using weather information derived from photovoltaic power plants," Renewable Energy, Elsevier, vol. 130(C), pages 130-138.
    4. Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Rene Pérez & David Sosa, 2022. "Methodology to Determine Energy Efficiency Strategies in Buildings Sited in Tropical Climatic Zones; Case Study, Buildings of the Tertiary Sector in the Dominican Republic," Energies, MDPI, vol. 15(13), pages 1-31, June.
    5. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    6. Carlos Morón & Jorge Pablo Diaz & Daniel Ferrández & Pablo Saiz, 2018. "Design, Development and Implementation of a Weather Station Prototype for Renewable Energy Systems," Energies, MDPI, vol. 11(9), pages 1-13, August.
    7. David Bienvenido-Huertas & Carlos Rubio-Bellido & Juan Luis Pérez-Ordóñez & Fernando Martínez-Abella, 2019. "Estimating Adaptive Setpoint Temperatures Using Weather Stations," Energies, MDPI, vol. 12(7), pages 1-47, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    3. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    4. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    5. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    6. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    7. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    8. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    9. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    10. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    11. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
    12. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Loke Kok Foong & Binh Nguyen Le, 2022. "Teaching–Learning–Based Optimization (TLBO) in Hybridized with Fuzzy Inference System Estimating Heating Loads," Energies, MDPI, vol. 15(21), pages 1-20, November.
    14. Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
    15. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    16. Jordan Higgins & Aditya Ramnarayan & Roxana Family & Michael Ohadi, 2024. "Analysis of Energy Efficiency Opportunities for a Public Transportation Maintenance Facility—A Case Study," Energies, MDPI, vol. 17(8), pages 1-20, April.
    17. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    18. Glasgo, Brock & Khan, Nyla & Azevedo, Inês Lima, 2020. "Simulating a residential building stock to support regional efficiency policy," Applied Energy, Elsevier, vol. 261(C).
    19. Sukjoon Oh & Juan-Carlos Baltazar & Jeff S. Haberl, 2022. "Assessment of the Impact of Using a Smart Thermostat and Smart Meter Data on a Whole-Building Energy Simulation," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    20. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:608-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.