IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp54-63.html
   My bibliography  Save this article

An experiment of a hydropower conversion system based on vortex-induced vibrations in a confined channel

Author

Listed:
  • Dellinger, Nicolas
  • François, Pierre
  • Lefebure, David
  • Mose, Robert
  • Garambois, Pierre-Andre

Abstract

A hydropower conversion system based on vortex-induced vibrations is investigated experimentally. It consists in a cylinder immerged in a low-velocity flow in a channel (under 1 m/s), which is linked to a variable stiffness spring, so that the natural frequency of the system might be controlled. Current studies report investigations on marine applications. Although rivers or channels constitute a strong energy potential, they are not exploited enough. In this paper, we will investigate the feasibility of such a system implantation in a confined flow in a channel, with important edge effects. We propose a study of the effects of a confined flow on the efficiency of the system. We will highlight feasible improvements, particularly through automatic control strategies (generator behaviour, system's natural frequency). Moreover, we show the strong influence of confinement on the flow topology through velocity field measurements using pulse-pair method.

Suggested Citation

  • Dellinger, Nicolas & François, Pierre & Lefebure, David & Mose, Robert & Garambois, Pierre-Andre, 2018. "An experiment of a hydropower conversion system based on vortex-induced vibrations in a confined channel," Renewable Energy, Elsevier, vol. 115(C), pages 54-63.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:54-63
    DOI: 10.1016/j.renene.2017.07.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Zhang & Fang Liu & Jijian Lian & Xiang Yan & Quanchao Ren, 2016. "Flow Induced Vibration and Energy Extraction of an Equilateral Triangle Prism at Different System Damping Ratios," Energies, MDPI, vol. 9(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    2. Shuang Li & Yong Yang & Qing Xia, 2018. "Dynamic Safety Assessment in Nonlinear Hydropower Generation Systems," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    3. Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
    4. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Nan & Lian, Jijian & Liu, Fang & Yan, Xiang & Li, Peiyao, 2020. "Experimental investigation of flow induced motion and energy conversion for triangular prism," Energy, Elsevier, vol. 194(C).
    2. Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
    3. Jijian Lian & Zhichuan Wu & Shuai Yao & Xiang Yan & Xiaoqun Wang & Zhaolin Jia & Yan Long & Nan Shao & Defeng Yang & Xinyi Li, 2022. "Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem," Energies, MDPI, vol. 15(21), pages 1-20, November.
    4. Nan Shao & Jijian Lian & Guobin Xu & Fang Liu & Heng Deng & Quanchao Ren & Xiang Yan, 2018. "Experimental Investigation of Flow-Induced Motion and Energy Conversion of a T-Section Prism," Energies, MDPI, vol. 11(8), pages 1-23, August.
    5. Latif, U. & Uddin, E. & Younis, M.Y. & Aslam, J. & Ali, Z. & Sajid, M. & Abdelkefi, A., 2021. "Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder," Energy, Elsevier, vol. 215(PB).
    6. Lin Ding & Qunfeng Zou & Li Zhang & Haibo Wang, 2018. "Research on Flow-Induced Vibration and Energy Harvesting of Three Circular Cylinders with Roughness Strips in Tandem," Energies, MDPI, vol. 11(11), pages 1-17, November.
    7. Iro Malefaki & Efstathios Konstantinidis, 2020. "Assessment of a Hydrokinetic Energy Converter Based on Vortex-Induced Angular Oscillations of a Cylinder," Energies, MDPI, vol. 13(3), pages 1-16, February.
    8. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:54-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.