IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v106y2017icp212-221.html
   My bibliography  Save this article

An advanced clear-sky model for more accurate irradiance and illuminance predictions for arbitrarily oriented inclined surfaces

Author

Listed:
  • Petržala, J.
  • Kómar, L.
  • Kocifaj, M.

Abstract

The article proposes a clear-sky physical model for the calculation of solar irradiances and illuminances. In contrast to other empirical models, ours takes into account the actual atmospheric pollution conditions, characterized by the optical parameters of atmospheric aerosols. Even if these optical parameters have not been measured directly, the model enables us to estimate their values from routinely measured solar radiation or daylight quantities at actinometric or daylight measurement stations and consequently to predict quantities not directly measured: irradiances and illuminances on arbitrary oriented or inclined surfaces. The software solution we have developed is demonstrated by a set of numerical experiments that are compared against the measurements.

Suggested Citation

  • Petržala, J. & Kómar, L. & Kocifaj, M., 2017. "An advanced clear-sky model for more accurate irradiance and illuminance predictions for arbitrarily oriented inclined surfaces," Renewable Energy, Elsevier, vol. 106(C), pages 212-221.
  • Handle: RePEc:eee:renene:v:106:y:2017:i:c:p:212-221
    DOI: 10.1016/j.renene.2017.01.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.01.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Xiudong & Lu, Zhenwu & Wang, Zhifeng & Yu, Weixing & Zhang, Hongxing & Yao, Zhihao, 2010. "A new method for the design of the heliostat field layout for solar tower power plant," Renewable Energy, Elsevier, vol. 35(9), pages 1970-1975.
    2. Kocifaj, Miroslav & Kómar, Ladislav, 2016. "Modeling diffuse irradiance under arbitrary and homogeneous skies: Comparison and validation," Applied Energy, Elsevier, vol. 166(C), pages 117-127.
    3. Tapakis, R. & Charalambides, A.G., 2014. "Enhanced values of global irradiance due to the presence of clouds in Eastern Mediterranean," Renewable Energy, Elsevier, vol. 62(C), pages 459-467.
    4. de Andrade, Ricardo Cesar & Tiba, Chigueru, 2016. "Extreme global solar irradiance due to cloud enhancement in northeastern Brazil," Renewable Energy, Elsevier, vol. 86(C), pages 1433-1441.
    5. Piacentini, Rubén D. & Salum, Graciela M. & Fraidenraich, Naum & Tiba, Chigueru, 2011. "Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 409-412.
    6. Muneer, T. & Kinghorn, D., 1998. "Solar irradiance & daylight illuminance data for the United Kingdom and Japan," Renewable Energy, Elsevier, vol. 15(1), pages 318-324.
    7. Chemisana, D. & Barrau, J. & Rosell, J.I. & Abdel-Mesih, B. & Souliotis, M. & Badia, F., 2013. "Optical performance of solar reflective concentrators: A simple method for optical assessment," Renewable Energy, Elsevier, vol. 57(C), pages 120-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Wanxiang & Zhang, Kang & Cao, Weixue & Li, Xianli & Wang, Yan & Wang, Xiao, 2022. "Research on the correlation between solar radiation and sky luminance based on the principle of photothermal integration," Renewable Energy, Elsevier, vol. 194(C), pages 1326-1342.
    2. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    3. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Fernández-Rubiera, J.A., 2020. "Predicting beam and diffuse horizontal irradiance using Fourier expansions," Renewable Energy, Elsevier, vol. 154(C), pages 46-57.
    4. Akarslan, Emre & Hocaoglu, Fatih Onur & Edizkan, Rifat, 2018. "Novel short term solar irradiance forecasting models," Renewable Energy, Elsevier, vol. 123(C), pages 58-66.
    5. Bo, Yu & Zhang, Yu & Zheng, Kunpeng & Zhang, Jingxu & Wang, Xiaochan & Sun, Jin & Wang, Jian & Shu, Sheng & Wang, Yu & Guo, Shirong, 2023. "Light environment simulation for a three-span plastic greenhouse based on greenhouse light environment simulation software," Energy, Elsevier, vol. 271(C).
    6. Lou, Siwei & Li, Danny H.W. & Alshaibani, Khalid A. & Xing, Haowei & Li, Zhengrong & Huang, Yu & Xia, Dawei, 2022. "An all-sky luminance and radiance distribution model for built environment studies," Renewable Energy, Elsevier, vol. 190(C), pages 822-835.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vamvakas, Ioannis & Salamalikis, Vasileios & Kazantzidis, Andreas, 2020. "Evaluation of enhancement events of global horizontal irradiance due to clouds at Patras, South-West Greece," Renewable Energy, Elsevier, vol. 151(C), pages 764-771.
    2. García, Jesús M. & Padilla, Ricardo Vasquez & Sanjuan, Marco E., 2016. "A biomimetic approach for modeling cloud shading with dynamic behavior," Renewable Energy, Elsevier, vol. 96(PA), pages 157-166.
    3. Tzoumanikas, P. & Nikitidou, E. & Bais, A.F. & Kazantzidis, A., 2016. "The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system," Renewable Energy, Elsevier, vol. 95(C), pages 314-322.
    4. Markku Järvelä & Seppo Valkealahti, 2020. "Operation of a PV Power Plant during Overpower Events Caused by the Cloud Enhancement Phenomenon," Energies, MDPI, vol. 13(9), pages 1-15, May.
    5. do Nascimento, Lucas Rafael & Braga, Marília & Campos, Rafael Antunes & Naspolini, Helena Flávia & Rüther, Ricardo, 2020. "Performance assessment of solar photovoltaic technologies under different climatic conditions in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1070-1082.
    6. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    7. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    8. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    9. Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.
    10. Assireu, Arcilan T. & Fisch, Gilberto & Carvalho, Vinícius S.O. & Pimenta, Felipe M. & de Freitas, Ramon M. & Saavedra, Osvaldo R. & Neto, Francisco L.A. & Júnior, Audálio R.T. & Oliveira, Denisson Q., 2024. "Sea breeze-driven effects on wind down-ramps: Implications for wind farms along the north-east coast of Brazil," Energy, Elsevier, vol. 294(C).
    11. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.
    12. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    13. Zahedi, Rahim & Ahmadi, Abolfazl & Dashti, Reza, 2021. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    15. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    16. Mettanant, Vichuda & Chaiwiwatworakul, Pipat & Chirarattananon, Surapong, 2017. "A model of Thai’s sky luminance distribution based on reduced CIE standard sky types," Renewable Energy, Elsevier, vol. 103(C), pages 739-749.
    17. Wang, Gang & Wang, Fasi & Shen, Fan & Jiang, Tieliu & Chen, Zeshao & Hu, Peng, 2020. "Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 146(C), pages 2351-2361.
    18. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    19. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    20. Arancibia-Bulnes, Camilo A. & Peña-Cruz, Manuel I. & Mutuberría, Amaia & Díaz-Uribe, Rufino & Sánchez-González, Marcelino, 2017. "A survey of methods for the evaluation of reflective solar concentrator optics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 673-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:106:y:2017:i:c:p:212-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.