IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002583.html
   My bibliography  Save this article

DG-Softmax: A new domain generalization intelligent fault diagnosis method for planetary gearboxes

Author

Listed:
  • Qian, Quan
  • Wen, Qijun
  • Tang, Rui
  • Qin, Yi

Abstract

Many unsupervised domain adaptation models have been explored to tackle the fault transfer diagnosis issues. Nevertheless, their achievements completely rely on the availability of target domain samples during training. Unfortunately, these testing samples are usually unavailable in advance due to routine maintenance and long designed life. Towards the real-time diagnosis demands in actual engineering, this study proposes a decision margin-based domain generalization framework that can indirectly achieve the distribution alignment between source and unseen target domains. Based on the framework, a novel DG-Softmax loss considering the class-level decision margin is proposed to enhance the feature separability. A novel adaptive and anti-interference selection mechanism of class-level decision margin named ACADM mechanism is established to select the decision margin in DG-Softmax loss adaptively. Furthermore, the DG-Softmax model, which only includes a task-related loss without any other auxiliary loss terms, is established to improve the computational efficiency and the diagnosis precision. A two-stage training scheme is utilized, including pre-training and training phases. The proposed DG-Softmax is evaluated on two cross-bearing transfer tasks from laboratory bearing to actual wind-turbine bearing and six cross-speed transfer tasks of the system-level planetary gearbox, and the experimental results validate that it outperforms other typical methods. The related code can be downloaded from https://qinyi-team.github.io/2025/03/DG-Softmax.

Suggested Citation

  • Qian, Quan & Wen, Qijun & Tang, Rui & Qin, Yi, 2025. "DG-Softmax: A new domain generalization intelligent fault diagnosis method for planetary gearboxes," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002583
    DOI: 10.1016/j.ress.2025.111057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yulin & Yang, Jun & Li, Lei, 2023. "Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Yan, Shen & Shao, Haidong & Min, Zhishan & Peng, Jiangji & Cai, Baoping & Liu, Bin, 2023. "FGDAE: A new machinery anomaly detection method towards complex operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shen & Chen, Jinglong & Liu, Zijun & Wang, Jun & Wang, Z. Jane, 2025. "Graph embedded patch-sense autoencoder with prior knowledge for multi-component system anomaly detection," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    2. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Lei, Zihao & Wen, Guangrui & Chen, Xuefeng, 2025. "Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    3. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Keshun, You & Guangqi, Qiu & Yingkui, Gu, 2024. "Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Cheng, Qixiu & Dai, Guiqi & Ru, Bowei & Liu, Zhiyuan & Ma, Wei & Liu, Hongzhe & Gu, Ziyuan, 2025. "Traffic Flow Outlier Detection for Smart Mobility Using Gaussian Process Regression Assisted Stochastic Differential Equations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    6. Ma, Hongbo & Wei, Jiacheng & Zhang, Guowei & Kong, Xianguang & Du, Jingli, 2024. "Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    7. Guo, Yu & Li, Xiangyu & Zhang, Jundong & Cheng, Ziyi, 2025. "SDCGAN: A CycleGAN-based single-domain generalization method for mechanical fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    8. Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Li, Yan-Fu & Zhao, Wei & Zhang, Chen & Ye, Jiantao & He, Huiru, 2024. "A study on the prediction of service reliability of wireless telecommunication system via distribution regression," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Yang, Miaorui & Zhang, Kun & Sheng, Zhipeng & Zhang, Xiangfeng & Xu, Yonggang, 2024. "The amplitude modulation bispectrum: A weak modulation features extracting method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Zhang, Kongliang & Li, Hongkun & Cao, Shunxin & Yang, Chen & Xiang, Wei, 2025. "SIGTN: A novel structural Infomax Graph Transfer Networks for rotating machinery fault diagnosis in cross-condition and cross-equipment scenarios," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    12. Wang, Jianwen & Song, Yueheng & He, Tian, 2025. "A novel adaptive monitoring framework for detecting the abnormal states of aero-engines with maneuvering flight data," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    13. Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Cao, Yudong & Zhuang, Jichao & Miao, Qiuhua & Jia, Minping & Feng, Ke & Zhao, Xiaoli & Yan, Xiaoan & Ding, Peng, 2024. "Source-free domain adaptation for transferable remaining useful life prediction of machine considering source data absence," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.