IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002133.html
   My bibliography  Save this article

Learning non-stationary model of prediction errors with hierarchical Bayesian modeling

Author

Listed:
  • Ping, Menghao
  • Yan, Wang-Ji
  • Jia, Xinyu
  • Papadimitriou, Costas
  • Yuen, Ka-Veng

Abstract

The hierarchical Bayesian modeling (HBM) framework has proven its effectiveness in addressing the model updating problem. However, the assumption of Gaussian white noise for prediction errors in HBM overlooks their inherent non-stationary uncertainties, which are prevalent in engineering applications. Ignoring the non-stationaries of prediction errors can lead to significant errors in identifying model parameters, ultimately resulting in biased predictions and reduced reliability of the updated model. To comprehensively estimate the non-stationary uncertainties of prediction errors while simultaneously identifying unknown physical model parameters, a new HBM framework is proposed, wherein the prediction errors are modeled using a non-stationary Gaussian process (GP). In this framework, the hyper parameters consist of two sets: one representing the statistics of the GP model and the other representing the distribution parameters of the physical model parameters. Due to the complexity stemming from the large number of parameters required in the non-stationary GP model, directly inferring the joint posterior distribution of all the hyperparameters is computationally infeasible. To address this issue, a sequential process is designed to infer the marginal distribution of each set of parameters individually. The product of these two marginal distributions is then used as an approximation of the joint distribution. Furthermore, an iterative procedure is proposed to ensure the consistency between the two distributions, ultimately achieving the optimal approximation of the joint posterior distribution. The effectiveness of the proposed framework is validated by identifying the structural parameters and prediction errors of time-history responses in a structural dynamic example using simulated data. It is then successfully applied to identify the fatigue crack growth (FCG) model using experimental data, resulting in improved predictive accuracy, as evidenced by the significantly narrower predicted interval for FCG life compared to the prediction made by the HBM.

Suggested Citation

  • Ping, Menghao & Yan, Wang-Ji & Jia, Xinyu & Papadimitriou, Costas & Yuen, Ka-Veng, 2025. "Learning non-stationary model of prediction errors with hierarchical Bayesian modeling," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002133
    DOI: 10.1016/j.ress.2025.111012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.