IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v259y2025ics0951832025001048.html
   My bibliography  Save this article

Dual sampling method for evaluating uncertainty when updating a Bayesian estimation model of a high-speed railway bridge

Author

Listed:
  • Yotsui, Haruki
  • Matsuoka, Kodai
  • Kaito, Kiyoyuki

Abstract

In Bayesian model updating, the parameters and uncertainties of a numerical model are updated with measured values to reproduce the conditions of an existing structure. However, the correlation of updated model parameters makes distortion of the tail space of the joint posterior distribution and uncertainty assessment difficult. To overcome this, a new uncertainty estimation methodology, dual Markov chain Monte Carlo (MCMC) method, is proposed in this study. First, the approximate shape of the joint posterior distribution is estimated and an empirical distribution of the likelihood is obtained by using the MCMC method. Second, the likelihood is transformed by using the obtained empirical distribution, and the tail space is estimated by using the replica exchange Monte Carlo method (REMC). The effectiveness of the proposed methodology is verified in updating a Bayesian structural model of a high-speed railway bridge using bridge acceleration during train passages. The joint posterior distribution of the estimated bridge frequency, modal damping ratio, and support stiffness had a large tail space distortion due to the correlation between each parameter. In general MCMC method, the number of MCMC samples corresponding to tail space is small, making it difficult to estimate the uncertainty. In addition, the model using the lower 5% confidence interval of the posterior distribution, which assumes each parameter to be independent, deviates significantly from the measurement results. On the other hand, the parameter sets expressing the tail space of posterior distribution obtained by proposed dual MCMC are efficiently estimated because the first step information is reflected in the second step sampling process. In addition, experimental results showed that the model updated by the proposed methodology could accurately estimate the resonance speed and evaluate the safety of the measured values while the model updated only by the MCMC method could not accurately estimate.

Suggested Citation

  • Yotsui, Haruki & Matsuoka, Kodai & Kaito, Kiyoyuki, 2025. "Dual sampling method for evaluating uncertainty when updating a Bayesian estimation model of a high-speed railway bridge," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001048
    DOI: 10.1016/j.ress.2025.110901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yushan & Li, Luyi & Chang, Zeming, 2023. "Efficient Bayesian model updating for dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    4. Kim, Kyeongsu & Lee, Gunhak & Park, Keonhee & Park, Seongho & Lee, Won Bo, 2021. "Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Arcieri, Giacomo & Hoelzl, Cyprien & Schwery, Oliver & Straub, Daniel & Papakonstantinou, Konstantinos G. & Chatzi, Eleni, 2023. "Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Allahvirdizadeh, R. & Andersson, A. & Karoumi, R., 2023. "Improved dynamic design method of ballasted high-speed railway bridges using surrogate-assisted reliability-based design optimization of dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    4. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    6. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    7. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Hasan Rasay & Seyed Mohammad Hadian & Farnoosh Naderkhani & Fariba Azizi, 2024. "Optimal condition based maintenance using attribute Bayesian control chart," Journal of Risk and Reliability, , vol. 238(4), pages 754-763, August.
    9. Chen, Junhua & Chen, Zhiqun & Jiang, Wei & Guo, Hun & Chen, Longmiao, 2025. "A reliability-based design optimization strategy using quantile surrogates by improved PC-kriging," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
    14. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    15. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Liu, Qiannan & Ma, Lin & Wang, Naichao & Chen, Ankang & Jiang, Qihang, 2022. "A condition-based maintenance model considering multiple maintenance effects on the dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. Wu, Xiaomin & Lu, Zhenzhou, 2025. "Efficient global reliability sensitivity method by combining dimensional reduction integral with stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    18. Amaya-Gómez, Rafael & Schoefs, Franck & Sánchez-Silva, Mauricio & Muñoz, Felipe & Bastidas-Arteaga, Emilio, 2022. "Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.