IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024007701.html
   My bibliography  Save this article

Rapid cascading risk assessment and vulnerable satellite identification schemes for LEO satellite networks

Author

Listed:
  • Zhang, Le
  • Du, Ye
  • Li, Ang

Abstract

LEO satellite networks are increasingly recognized as a vital component of critical infrastructure worldwide. However, their vulnerability to cascading failures, triggered by both natural and human factors, remains a significant concern. In these networks, failures can propagate rapidly, highlighting the need for quick and accurate assessment of cascading risks and the protection of critical satellites to enhance network reliability. Despite this, current research predominantly focuses on analyzing complex cascading patterns using high-complexity algorithms, which are often not timely enough for effective risk assessment. To address this issue, this paper proposes a rapid cascading risk assessment scheme. It introduces a satellite dynamic simplification method that combines physical and logical addressing and provides an abstract model for assessing failure propagation risk, alongside a quadratic-order algorithm. Furthermore, a scheme for identifying vulnerable satellites is proposed, including the establishment of an optimization model, analysis of the applicability of a greedy strategy, and the development of a vulnerable satellite identification algorithm based on this strategy, achieving cubic-order complexity. Extensive case studies conducted on three constellations of different scales demonstrate that our risk assessment scheme can achieve over 90% accuracy with a deviation of less than 6.2% in 2 s.The vulnerable satellite identification scheme accurately identifies satellites likely to cause severe cascading failures within 7.5 s. The proposed schemes can be implemented in satellites or ground stations to provide rapid risk decision support during unexpected events, offering practical tools for network managers to enhance network reliability.

Suggested Citation

  • Zhang, Le & Du, Ye & Li, Ang, 2025. "Rapid cascading risk assessment and vulnerable satellite identification schemes for LEO satellite networks," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007701
    DOI: 10.1016/j.ress.2024.110699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivashkevich, E.V. & Priezzhev, V.B., 1998. "Introduction to the sandpile model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 254(1), pages 97-116.
    2. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Fu, Xiuwen & Li, Qing & Li, Wenfeng, 2023. "Modeling and analysis of industrial IoT reliability to cascade failures: An information-service coupling perspective," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Fu, Xiuwen & Wang, Ye & Yang, Yongsheng & Postolache, Octavian, 2022. "Analysis on cascading reliability of edge-assisted Internet of Things," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Yang, Shenhao & Chen, Weirong & Zhang, Xuexia & Yang, Weiqi, 2021. "A Graph-based Method for Vulnerability Analysis of Renewable Energy integrated Power Systems to Cascading Failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Zhang, Jiarui & Huang, Jian & Zhang, Zhongjie, 2023. "Analysis of the effect of node attack method on cascading failures in multi-layer directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Zhang, Le & Du, Ye, 2023. "Cascading failure model and resilience enhancement scheme of space information networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Hou, Yueyi & Xing, Xiaoyun & Li, Menghui & Zeng, An & Wang, Yougui, 2017. "Overload cascading failure on complex networks with heterogeneous load redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 160-166.
    11. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Song, Zhiting & Zhu, Jianhua & Chen, Kun, 2025. "Robustness analysis of smart manufacturing systems against resource failures: A two-layered network perspective," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    3. Zhao, Yixin & Cai, Baoping & Cozzani, Valerio & Liu, Yiliu, 2025. "Failure dependence and cascading failures: A literature review and research opportunities," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    4. Dui, Hongyan & Wang, Jiafeng & Zhu, Tianmeng & Xing, Liudong, 2024. "Maintenance optimization methodology of edge cloud collaborative systems based on a gateway cost index in IIoT," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Jin, Yi & Zhang, Qingyuan & Chen, Yunxia & Lu, Zhendan & Zu, Tianpei, 2023. "Cascading failures modeling of electronic circuits with degradation using impedance network," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Dui, Hongyan & Zhang, Huanqi & Dong, Xinghui & Zhang, Songru, 2024. "Cascading failure and resilience optimization of unmanned vehicle distribution networks in IoT," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    7. Fu, Xiuwen & Zheng, Dingyi & Liu, Xiangwei & Xing, Liudong & Peng, Rui, 2025. "Systematic review and future perspectives on cascading failures in Internet of Things: Modeling and optimization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    8. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Qian, Cheng & Zhao, Dandan & Zhong, Ming & Peng, Hao & Wang, Wei, 2025. "Modeling and analysis of cascading failures in multilayer higher-order networks," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Liu, Xiangyu & Xiong, Guojiang & Mirjalili, Seyedali, 2024. "Accurate fault section diagnosis of power systems with a binary adaptive quadratic interpolation learning differential evolution," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Wang, Chaonan & Lie, Yingxi & Mo, Yuchang & Guan, Quanlong, 2025. "Reliability analysis of IoV-based vehicle monitoring systems subject to cascading probabilistic common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    12. Tu, Haicheng & Gu, Fengqiang & Zhang, Xi & Xia, Yongxiang, 2023. "Robustness analysis of power system under sequential attacks with incomplete information," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Liu, Yimeng & Sui, Shaobo & Lu, Dan & Peng, Rui & Bai, Mingyang & Li, Daqing, 2024. "Emergent lifetime distribution from complex network systems aging," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    15. Nasir Quadir & Fatma S. Alawar & Lutfi Albasha & Hasan Mir, 2023. "Linear-in-dB Logarithmic Signal Strength Sensor Circuit for Wireless Power Transfer Receivers," Energies, MDPI, vol. 16(22), pages 1-14, November.
    16. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    17. Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    19. Katherine Emma Lonergan & Salvatore Francesco Greco & Giovanni Sansavini, 2023. "Ensuring/insuring resilient energy system infrastructure," Environment Systems and Decisions, Springer, vol. 43(4), pages 625-638, December.
    20. Jinghan He & Ninghui Han & Ziqi Wang, 2021. "Optimization Method for Multiple Measures to Mitigate Line Overloads in Power Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.