IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023006002.html
   My bibliography  Save this article

Human reliability evaluation method covering operator action timing for dynamic probabilistic safety assessment

Author

Listed:
  • Jo, Wooseok
  • Lee, Seung Jun

Abstract

Dynamic probabilistic safety assessment (PSA) has been introduced due to the limitations of static-based PSA such as the difficulty to analyze dynamic sequences caused by stochastic random events. While various research has been performed to achieve this integration, quantifying risk in dynamic PSA is still challenging because operator response models that can provide a branch probability according to the timing of operator action in dynamic scenarios have not yet been addressed. Existing human reliability analysis (HRA) models only consider the time given to operators for actions insofar as it can impact the failure probabilities of the human actions, despite the timing of the actions being a vital element of HRA for dynamic scenarios. This paper proposes an operator action timing-based human reliability evaluation method for dynamic PSA to evaluate the distribution of operator action timing. The method covers operator action timings with a model that convolutes two time distribution functions to provide the probability of the success or failure of an operator action. To demonstrate the practicality of the proposed method and its effectiveness, a case study and uncertainty analysis for a small break loss of coolant accident with two operator tasks were conducted.

Suggested Citation

  • Jo, Wooseok & Lee, Seung Jun, 2024. "Human reliability evaluation method covering operator action timing for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023006002
    DOI: 10.1016/j.ress.2023.109686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asadayoobi, N. & Taghipour, S. & Jaber, M.Y., 2022. "Predicting human reliability based on probabilistic mission completion time using Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Parhizkar, Tarannom & Vinnem, Jan Erik & Utne, Ingrid Bouwer & Mosleh, Ali, 2021. "Supervised Dynamic Probabilistic Risk Assessment of Complex Systems, Part 1: General Overview," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Xin Gao & Hong Xu & Dong Ye, 2009. "Asymptotic Behavior of Tail Density for Sum of Correlated Lognormal Variables," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2009, pages 1-28, August.
    6. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1014-1040.
    7. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    8. Lee, Seung Jun & Kim, Man Cheol & Seong, Poong Hyun, 2008. "An analytical approach to quantitative effect estimation of operation advisory system based on human cognitive process using the Bayesian belief network," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 567-577.
    9. Cho, Jaehyun & Kim, Yochan & Kim, Jaewhan & Park, Jinkyun & Kim, Dong-San, 2020. "Realistic estimation of human error probability through Monte Carlo thermal-hydraulic simulation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Asmussen, Søren & Rojas-Nandayapa, Leonardo, 2008. "Asymptotics of sums of lognormal random variables with Gaussian copula," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2709-2714, November.
    11. Baek, Sejin & Heo, Gyunyoung, 2023. "Development of dynamic integrated consequence evaluation (DICE) for dynamic event tree approaches: Numerical validation for a loss of coolant accident," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    4. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    5. Xiaoou Li & Jingchen Liu & Gongjun Xu, 2016. "On the Tail Probabilities of Aggregated Lognormal Random Fields with Small Noise," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 236-246, February.
    6. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    7. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin, 2020. "Performance shaping factors dependence assessment through moderating and mediating effect analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    11. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    12. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    14. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    17. Aminu Darda’u Rafindadi & Nasir Shafiq & Idris Othman & Miljan Mikić, 2023. "Mechanism Models of the Conventional and Advanced Methods of Construction Safety Training. Is the Traditional Method of Safety Training Sufficient?," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    18. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023006002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.