IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023005021.html
   My bibliography  Save this article

Evaluating the resilience of electrical power line outages caused by wildfires

Author

Listed:
  • Sayarshad, Hamid R.
  • Ghorbanloo, Romina

Abstract

Power transmission lines are an essential component of the electricity distribution system, responsible for transporting electricity from power plants to homes and businesses. Power lines are often used in high-risk areas such as forest areas. A significant danger to power conductors can be posed by wildfires that cause considerable losses to the power grids. This study considers a fire growth model in heterogeneous landscapes concerning topography, weather elements, and fuel variables. We solve an optimal power flow problem that incorporates the cooling and heating process of power conductors. The current–temperature relationship of power conductors is determined based on the fire heating factor and power flows. The resilience of electrical power line outages is also studied that considering the relationship between fire behaviors and the physical locations of power lines. Moreover, the breakdown voltage probability with respect to power line height and wildfire distance from power lines is studied. The results show that the breakdown voltage reduces by up to 14% for an 11 m increase in line height. Similarly, the breakdown voltage decreases by up to 28% for a 15 m increase in wildfire distances from power lines. Lastly, the relationship between the loss of tensile strength, temperature, and time for an aluminum conductor is also evaluated. We observe that the aging failure probability increases over time by up to 7% when the conductors’ temperature increases by up to 150 (°C).

Suggested Citation

  • Sayarshad, Hamid R. & Ghorbanloo, Romina, 2023. "Evaluating the resilience of electrical power line outages caused by wildfires," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005021
    DOI: 10.1016/j.ress.2023.109588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seulbi & Choi, Minji & Lee, Hyun-Soo & Park, Moonseo, 2020. "Bayesian network-based seismic damage estimation for power and potable water supply systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    3. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Cao, Quoc Dung & Miles, Scott B. & Choe, Youngjun, 2022. "Infrastructure recovery curve estimation using Gaussian process regression on expert elicited data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Xiangrui & Tian, Li & Li, Chao & Liu, Juncai, 2024. "Copula-based wind-induced failure prediction of overhead transmission line considering multiple temperature factors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    2. Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Hou, Guangyang & Muraleetharan, Kanthasamy K. & Panchalogaranjan, Vinushika & Moses, Paul & Javid, Amir & Al-Dakheeli, Hussein & Bulut, Rifat & Campos, Richard & Harvey, P. Scott & Miller, Gerald & Bo, 2023. "Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    12. Lu, Ying & Wang, Qingling & Huang, Shiyu & Yu, Wenhui & Yao, Shuyue, 2024. "Resilience quantification and recovery strategy simulation for urban underground logistics systems under node and link attacks: A case study of Nanjing city," International Journal of Critical Infrastructure Protection, Elsevier, vol. 47(C).
    13. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    15. Yangyang Wu & Suren Chen, 2023. "Transportation Resilience Modeling and Bridge Reconstruction Planning Based on Time-Evolving Travel Demand during Post-Earthquake Recovery Period," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    16. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Banghua Xie & Changfan Li & Zili Wu & Weiming Chen, 2021. "Topological Modeling Research on the Functional Vulnerability of Power Grid under Extreme Weather," Energies, MDPI, vol. 14(16), pages 1-27, August.
    18. Wang, Wei & He, Yufei & Wang, Hongbin & Chen, Hongzhou & Xiong, Xiaofu, 2024. "Improving interdependent urban power and gas distribution systems resilience through optimal scheduling of mobile emergency supply and repair resources," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    20. Daniel Thompson & Gianluca Pescaroli, 2024. "Financing electricity resilience in local communities: a review of the literature," Environment Systems and Decisions, Springer, vol. 44(3), pages 740-762, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.