IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004817.html
   My bibliography  Save this article

Building reliable budget-based binary-state networks

Author

Listed:
  • Yeh, Wei-Chang

Abstract

Everyday life is driven by various network, such as supply chains for distributing raw materials, semi-finished product goods, and final products; Internet of Things (IoT) for connecting and exchanging data; utility networks for transmitting fuel, power, water, electricity, and 4Â G/5Â G; and social networks for sharing information and connections. The binary-state network is a basic network, where the state of each component is either success or failure, i.e., the binary-state. Network reliability plays an important role in evaluating the performance of network planning, design, and management. Because more networks are being set up in the real world currently, there is a need for their reliability. It is necessary to build a reliable network within a limited budget. However, existing studies are focused on the budget limit for each minimal path (MP) in networks without considering the total budget of the entire network. We propose a novel concept to consider how to build a more reliable binary-state network under the budget limit. In addition, we propose an algorithm based on the binary-addition-tree algorithm (BAT) and stepwise vectors to solve the problem efficiently.

Suggested Citation

  • Yeh, Wei-Chang, 2023. "Building reliable budget-based binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004817
    DOI: 10.1016/j.ress.2023.109567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Hao, Zhifeng & Yeh, Wei-Chang & Zuo, Ming & Wang, Jing, 2020. "Multi-distribution multi-commodity multistate flow network model and its reliability evaluation algorithm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Kakadia, Deepak & Ramirez-Marquez, Dr. Jose Emmanuel, 2020. "Quantitative approaches for optimization of user experience based on network resilience for wireless service provider networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Yeh, Wei-Chang, 2004. "Multistate network reliability evaluation under the maintenance cost constraint," International Journal of Production Economics, Elsevier, vol. 88(1), pages 73-83, March.
    5. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Niu, Yi-Feng & Song, Yi-Fan & Xu, Xiu-Zhen & Zhao, Xia, 2022. "Efficient reliability computation of a multi-state flow network with cost constraint," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Yu, Weichao & Wen, Kai & Min, Yuan & He, Lei & Huang, Weihe & Gong, Jing, 2018. "A methodology to quantify the gas supply capacity of natural gas transmission pipeline system using reliability theory," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 128-141.
    8. Hao, Zhifeng & Yeh, Wei-Chang & Tan, Shi-Yi, 2021. "One-batch preempt deterioration-effect multi-state multi-rework network reliability problem and algorithms," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Majid Forghani-elahabad & Nelson Kagan, 2019. "Reliability evaluation of a stochastic-flow network in terms of minimal paths with budget constraint," IISE Transactions, Taylor & Francis Journals, vol. 51(5), pages 547-558, May.
    10. Yi-Feng Niu & Can He & De-Qiang Fu, 2022. "Reliability assessment of a multi-state distribution network under cost and spoilage considerations," Annals of Operations Research, Springer, vol. 309(1), pages 189-208, February.
    11. Rocco Sanseverino, Claudio M. & Ramirez-Marquez, José Emmanuel, 2014. "Uncertainty propagation and sensitivity analysis in system reliability assessment via unscented transformation," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 176-185.
    12. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Yeh, Wei-Chang, 2005. "A new approach to evaluate reliability of multistate networks under the cost constraint," Omega, Elsevier, vol. 33(3), pages 203-209, June.
    14. Yeh, Wei-Chang, 2017. "Evaluation of the one-to-all-target-subsets reliability of a novel deterioration-effect acyclic multi-state information network," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 132-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Xiaosen & Yin, Yuan & Jiao, Liudan & Zhang, Yu, 2024. "A data-driven and knowledge graph-based analysis of the risk hazard coupling mechanism in subway construction accidents," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeh, Wei-Chang & Zhu, Wenbo, 2024. "Optimal allocation of financial resources for ensuring reliable resilience in binary-state network infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Yeh, Wei-Chang, 2023. "Novel recursive inclusion-exclusion technology based on BAT and MPs for heterogeneous-arc binary-state network reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Yeh, Wei-Chang, 2023. "QB-II for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Niu, Yi-Feng & Wang, Jun-Feng & Xu, Xiu-Zhen & Xu, Qian-Xin, 2025. "Reliability evaluation for a multi-commodity multi-state distribution network under transportation emission consideration," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    6. Niu, Yi-Feng & Zhou, Run-Hui & Xu, Xiu-Zhen & Xiang, Hai-Yan, 2024. "A reliability index to measure multi-state flow network considering capacity restoration level and maintenance cost," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    7. Xu, Xiu-Zhen & Zhou, Run-Hui & Wu, Guo-Lin & Niu, Yi-Feng, 2024. "Evaluating the transmission distance-constrained reliability for a multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Yi-Feng Niu & Meng-Meng Yuan & Xiu-Zhen Xu, 2025. "Optimal carrier selection to improve logistics network reliability with delivery spoilage," Annals of Operations Research, Springer, vol. 346(3), pages 2195-2223, March.
    10. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Yeh, Wei-Chang, 2021. "A quick BAT for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Niu, Yi-Feng & Song, Yi-Fan & Xu, Xiu-Zhen & Zhao, Xia, 2022. "Efficient reliability computation of a multi-state flow network with cost constraint," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Xu, Xiu-Zhen & Niu, Yi-Feng & Song, Yi-Fan, 2021. "Computing the reliability of a stochastic distribution network subject to budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Niu, Yi-Feng & Xiang, Hai-Yan & Xu, Xiu-Zhen, 2024. "Expected performance evaluation and optimization of a multi-distribution multi-state logistics network based on network reliability," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    17. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Yi-Kuei Lin & Cheng-Fu Huang, 2016. "Reliability evaluation according to a routing scheme for multi-state computer networks under assured accuracy rate," Annals of Operations Research, Springer, vol. 244(1), pages 221-240, September.
    19. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2012. "Determining the optimal double-component assignment for a stochastic computer network," Omega, Elsevier, vol. 40(1), pages 120-130, January.
    20. Lin, Yi-Kuei, 2007. "Performance evaluation for the logistics system in case that capacity weight varies from arcs and types of commodity," International Journal of Production Economics, Elsevier, vol. 107(2), pages 572-580, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.