IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004696.html
   My bibliography  Save this article

BCMS4W-ST: On the Bi-directional Circular Multi-State System with Spatiotemporal Sliding Window for Sequential Tasks

Author

Listed:
  • Wang, Wei
  • Lin, Mingqiang
  • Si, Peng
  • Wang, Yan
  • Fan, Binning

Abstract

In industrial applications, circular systems possess the natural ability to rotate bi-directionally, which essentially provides redundancy to maintain higher system reliability. This paper proposes a new model of bi-directional circular multi-state system with a spatiotemporal sliding window for sequential tasks (BCMS4W-ST). The system contains n mutually independent multi-state elements (MEs) in a circle and can rotate bi-directionally. The system functionality depends on the ability of r consecutive MEs starting from any ME in either counterclockwise or clockwise directions for completing pre-specified sequential tasks within a limited completion time. A universal generating function technique is employed to describe and evaluate the system reliability. The reliability model is built by considering feasible performance assignment schemes of involved consecutive MEs, and a dynamic programming algorithm is introduced to efficiently determine the assignment scheme with the shortest completion time. Numerical experiments have demonstrated the proposed system model and the suggested algorithm. Finally, the element sequencing optimization for BCMS4W-ST is investigated as a viable way to improve system reliability. The proposed model and method support reliability analysis and improvement of circular multi-state sliding window systems with bi-directional rotation mechanism for completing sequential heterogeneous tasks.

Suggested Citation

  • Wang, Wei & Lin, Mingqiang & Si, Peng & Wang, Yan & Fan, Binning, 2023. "BCMS4W-ST: On the Bi-directional Circular Multi-State System with Spatiotemporal Sliding Window for Sequential Tasks," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004696
    DOI: 10.1016/j.ress.2023.109555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Hui & Yi, Kunxiang & Liu, Haitao & Kou, Gang, 2021. "Reliability modeling and optimization of a two-dimensional sliding window system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Mo, Yuchang & Xing, Liudong & Zhang, Lejun & Cai, Shaobin, 2020. "Performability analysis of multi-state sliding window systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Wang, Wei & Fang, Chao & Liu, Shan & Xiang, Yisha, 2021. "Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Wang, Wei & Fu, Yongnian & Si, Peng & Lin, Mingqiang, 2020. "Reliability analysis of circular multi-state sliding window system with sequential demands," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Xiang, Yanping & Levitin, Gregory, 2012. "Combined m-consecutive and k-out-of-n sliding window systems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 105-113.
    7. Levitin, Gregory, 2005. "Uneven allocation of elements in linear multi-state sliding window system," European Journal of Operational Research, Elsevier, vol. 163(2), pages 418-433, June.
    8. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    9. Long, Junqi & Chen, Chuanhai & Liu, Zhifeng & Guo, Jinyan & Chen, Weizheng, 2022. "Stochastic hybrid system approach to task-orientated remaining useful life prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Huang, Hong-Zong, 2019. "Dynamic demand satisfaction probability of consecutive sliding window systems with warm standby components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 397-405.
    11. Wang, Wei & Fang, Chao & Wang, Yan & Li, Jin, 2022. "Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jiaxin & Rangaiah, Gade Pandu & Dong, Lichun & Samavedham, Lakshminarayanan, 2025. "An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Fang, Chao & Wang, Yan & Li, Jin, 2022. "Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Wang, Wei & Fang, Chao & Liu, Shan & Xiang, Yisha, 2021. "Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Xiao, Hui & Yi, Kunxiang & Liu, Haitao & Kou, Gang, 2021. "Reliability modeling and optimization of a two-dimensional sliding window system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Wang, Wei & Fu, Yongnian & Si, Peng & Lin, Mingqiang, 2020. "Reliability analysis of circular multi-state sliding window system with sequential demands," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Wu, Congshan & Zhao, Xian & Wang, Siqi & Song, Yanbo, 2022. "Reliability analysis of consecutive-k-out-of-r-from-n subsystems: F balanced systems with load sharing," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Cao, Minhao & Guo, Jianjun & Xiao, Hui & Wu, Liang, 2022. "Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Mangey Ram & Subhi Tyagi & Akshay Kumar, 2024. "Reliability evaluation of a programmable logic controller based system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3620-3628, August.
    9. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    10. Wang, Xiaoyue & Chen, Xi & Zhao, Xian & Ning, Ru, 2024. "Reliability analysis of self-healing systems equipped with multi-component protective devices operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Mo, Yuchang & Xing, Liudong & Zhang, Lejun & Cai, Shaobin, 2020. "Performability analysis of multi-state sliding window systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Ding, Yi & Hu, Yishuang & Li, Daqing, 2021. "Redundancy Optimization for Multi-Performance Multi-State Series-Parallel Systems Considering Reliability Requirements," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Xiao, Hui & Cao, Minhao, 2020. "Balancing the demand and supply of a power grid system via reliability modeling and maintenance optimization," Energy, Elsevier, vol. 210(C).
    15. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Zhao, Xian & Li, Ziyue & Wang, Xiaoyue & Guo, Bin, 2023. "Reliability of performance-based system containing multiple load-sharing subsystems with protective devices considering protection randomness," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Chen, Yefang & Wang, Yilai & Xiao, Hui & Peng, Rui, 2024. "Reliability modeling and optimization of a two-dimensional system considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    18. Hui Xiao & Kunxiang Yi & Gang Kou & Liudong Xing, 2020. "Reliability of a two‐dimensional demand‐based networked system with multistate components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 453-468, September.
    19. Han, Zhong & Tian, Liting & Cheng, Lin, 2021. "A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.