IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp511-517.html
   My bibliography  Save this article

A heuristic survival signature based approach for reliability-redundancy allocation

Author

Listed:
  • Huang, Xianzhen
  • Coolen, Frank P.A.
  • Coolen-Maturi, Tahani

Abstract

In recent research, the major focus on reliability-redundancy allocation problems has been on the possibility of using more efficient and effective algorithms to improve convergence speed and solution accuracy of the optimization model. But the model of reliability-redundancy allocation itself has not been investigated further. In this paper, we try to simplify the optimization model of the reliability-redundancy allocation problem by using the theory of survival signature. To achieve this, the information of the structure of a system is summarized by the survival signature. The reliability-redundancy allocation problem is formulated as an optimization problem with the objective of maximizing system reliability under some constraints. A new adaptive penalty function is proposed to transfer the constraint optimization problem to an unconstraint one. Then a heuristic algorithm called stochastic fractal search is applied to solve the unconstraint optimization. Moreover, the (joint) structure importance is used to measure the relative importance of components to concretely allocate the redundancy level of each component. The proposed method only needs to calculate the survival signature once, reduces the dimension of the optimization problem and provides insight into system reliability-redundancy allocation.

Suggested Citation

  • Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:511-517
    DOI: 10.1016/j.ress.2019.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018309785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
    2. Mellal, Mohamed Arezki & Zio, Enrico, 2016. "A penalty guided stochastic fractal search approach for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 213-227.
    3. Huang, Chia-Ling, 2015. "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 221-230.
    4. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    5. George-Williams, Hindolo & Patelli, Edoardo, 2016. "A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 351-367.
    6. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 153-160.
    7. Chatwattanasiri, Nida & Coit, David W. & Wattanapongsakorn, Naruemon, 2016. "System redundancy optimization with uncertain stress-based component reliability: Minimization of regret," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 73-83.
    8. Aven, T. & Nøkland, T.E., 2010. "On the use of uncertainty importance measures in reliability and risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 127-133.
    9. Frank PA Coolen & Tahani Coolen-Maturi & Abdullah H Al-nefaiee, 2014. "Nonparametric predictive inference for system reliability using the survival signature," Journal of Risk and Reliability, , vol. 228(5), pages 437-448, October.
    10. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    11. Meisam Sadeghi & Emad Roghanian, 2017. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 231(5), pages 587-604, October.
    12. Walter, Gero & Flapper, Simme Douwe, 2017. "Condition-based maintenance for complex systems based on current component status and Bayesian updating of component reliability," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 227-239.
    13. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.
    14. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    15. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    16. Reed, Sean, 2017. "An efficient algorithm for exact computation of system and survival signatures using binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 257-267.
    17. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    18. Feizabadi, Mohammad & Jahromi, Abdolhamid Eshraghniaye, 2017. "A new model for reliability optimization of series-parallel systems with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 101-112.
    19. Eryilmaz, Serkan & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2018. "Marginal and joint reliability importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 118-128.
    20. Ha, Chunghun & Kuo, Way, 2006. "Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems," European Journal of Operational Research, Elsevier, vol. 171(1), pages 24-38, May.
    21. Louis J. M. Aslett & Frank P. A. Coolen & Simon P. Wilson, 2015. "Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1640-1651, September.
    22. Caserta, Marco & Voß, Stefan, 2015. "An exact algorithm for the reliability redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 110-116.
    23. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    24. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    25. Gao, Xueli & Cui, Lirong & Li, Jinlin, 2007. "Analysis for joint importance of components in a coherent system," European Journal of Operational Research, Elsevier, vol. 182(1), pages 282-299, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coolen-Maturi, Tahani & Coolen, Frank P.A. & Balakrishnan, Narayanaswamy, 2021. "The joint survival signature of coherent systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Enrico Zio & Hadi Gholinezhad, 2023. "Redundancy Allocation of Components with Time-Dependent Failure Rates," Mathematics, MDPI, vol. 11(16), pages 1-27, August.
    6. Mellal, Mohamed Arezki & Zio, Enrico, 2020. "System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    7. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Yao Li & Frank PA Coolen, 2019. "Time-dependent reliability analysis of wind turbines considering load-sharing using fault tree analysis and Markov chains," Journal of Risk and Reliability, , vol. 233(6), pages 1074-1085, December.
    9. Ling, Chunyan & Yang, Lechang & Feng, Kaixuan & Kuo, Way, 2023. "Survival signature based robust redundancy allocation under imprecise probability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Hsieh, Tsung-Jung, 2021. "Component mixing with a cold standby strategy for the redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    11. Ding, Yi & Hu, Yishuang & Li, Daqing, 2021. "Redundancy Optimization for Multi-Performance Multi-State Series-Parallel Systems Considering Reliability Requirements," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Eslami Baladeh, Aliakbar & Taghipour, Sharareh, 2022. "Reliability optimization of dynamic k-out-of-n systems with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    13. Yuxiong Li & Xianzhen Huang & Xinong En & Pengfei Ding, 2019. "A New System Reliability Optimization Model Based on Swapping Existing Components," Complexity, Hindawi, vol. 2019, pages 1-14, November.
    14. Yishuang Hu & Yi Ding & Zhiguo Zeng, 2022. "Redundancy optimization for multi-state series-parallel systems using ordinal optimization-based-genetic algorithm," Journal of Risk and Reliability, , vol. 236(1), pages 66-78, February.
    15. Qin, Jinlei & Coolen, Frank P.A., 2022. "Survival signature for reliability evaluation of a multi-state system with multi-state components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    2. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    3. Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
    4. Mohammad N Juybari & Mostafa Abouei Ardakan & Hamed Davari-Ardakani, 2019. "A penalty-guided fractal search algorithm for reliability–redundancy allocation problems with cold-standby strategy," Journal of Risk and Reliability, , vol. 233(5), pages 775-790, October.
    5. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    7. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Yuxiong Li & Xianzhen Huang & Xinong En & Pengfei Ding, 2019. "A New System Reliability Optimization Model Based on Swapping Existing Components," Complexity, Hindawi, vol. 2019, pages 1-14, November.
    9. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    12. Behzad Karimi & Seyed Taghi Akhavan Niaki & Seyyed Masih Miriha & Mahsa Ghare Hasanluo & Shima Javanmard, 2019. "A weighted K-means clustering approach to solve the redundancy allocation problem of systems having components with different failures," Journal of Risk and Reliability, , vol. 233(6), pages 925-942, December.
    13. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Reed, Sean & Löfstrand, Magnus & Andrews, John, 2019. "An efficient algorithm for computing exact system and survival signatures of K-terminal network reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 429-439.
    16. Muhuri, Pranab K. & Nath, Rahul, 2019. "A novel evolutionary algorithmic solution approach for bilevel reliability-redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Coolen-Maturi, Tahani & Coolen, Frank P.A. & Balakrishnan, Narayanaswamy, 2021. "The joint survival signature of coherent systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive particle swarm optimization method for multi-objective system reliability optimization," Journal of Risk and Reliability, , vol. 233(6), pages 990-1001, December.
    19. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:511-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.