IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v157y2017icp101-112.html
   My bibliography  Save this article

A new model for reliability optimization of series-parallel systems with non-homogeneous components

Author

Listed:
  • Feizabadi, Mohammad
  • Jahromi, Abdolhamid Eshraghniaye

Abstract

In discussions related to reliability optimization using redundancy allocation, one of the structures that has attracted the attention of many researchers, is series-parallel structure. In models previously presented for reliability optimization of series-parallel systems, there is a restricting assumption based on which all components of a subsystem must be homogeneous. This constraint limits system designers in selecting components and prevents achieving higher levels of reliability. In this paper, a new model is proposed for reliability optimization of series-parallel systems, which makes possible the use of non-homogeneous components in each subsystem. As a result of this flexibility, the process of supplying system components will be easier. To solve the proposed model, since the redundancy allocation problem (RAP) belongs to the NP-hard class of optimization problems, a genetic algorithm (GA) is developed. The computational results of the designed GA are indicative of high performance of the proposed model in increasing system reliability and decreasing costs.

Suggested Citation

  • Feizabadi, Mohammad & Jahromi, Abdolhamid Eshraghniaye, 2017. "A new model for reliability optimization of series-parallel systems with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 101-112.
  • Handle: RePEc:eee:reensy:v:157:y:2017:i:c:p:101-112
    DOI: 10.1016/j.ress.2016.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016304288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abouei Ardakan, Mostafa & Zeinal Hamadani, Ali, 2014. "Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 132-139.
    2. Ouzineb, Mohamed & Nourelfath, Mustapha & Gendreau, Michel, 2008. "Tabu search for the redundancy allocation problem of homogenous series–parallel multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1257-1272.
    3. Mellal, Mohamed Arezki & Zio, Enrico, 2016. "A penalty guided stochastic fractal search approach for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 213-227.
    4. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    5. Huang, Chia-Ling, 2015. "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 221-230.
    6. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    7. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    8. Nahas, Nabil & Nourelfath, Mustapha & Ait-Kadi, Daoud, 2007. "Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 211-222.
    9. Yalaoui, Alice & Chu, Chengbin & Châtelet, Eric, 2005. "Reliability allocation problem in a series–parallel system," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 55-61.
    10. Chambari, Amirhossain & Najafi, Amir Abbas & Rahmati, Seyed Habib A. & Karimi, Aida, 2013. "An efficient simulated annealing algorithm for the redundancy allocation problem with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 158-164.
    11. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    12. Tavakkoli-Moghaddam, R. & Safari, J. & Sassani, F., 2008. "Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 550-556.
    13. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    14. Liang, Yun-Chia & Chen, Yi-Ching, 2007. "Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 323-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    2. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Redundancy allocation problem of phased-mission system with non-exponential components and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    3. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Petru Cașcaval & Florin Leon, 2022. "Optimization Methods for Redundancy Allocation in Hybrid Structure Large Binary Systems," Mathematics, MDPI, vol. 10(19), pages 1-33, October.
    5. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    6. Meisam Sadeghi & Emad Roghanian & Hamid Shahriari & Hassan Sadeghi, 2021. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 235(3), pages 509-528, June.
    7. Guilani, Pardis Pourkarim & Ardakan, Mostafa Abouei & Dobani, Ehsan Ramezani, 2022. "Optimal component sequence in heterogeneous 1-out-of-N mixed RRAPs," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Ardakan, Mostafa Abouei & Talkhabi, Sajjad & Juybari, Mohammad N., 2022. "Optimal activation order vs. redundancy strategies in reliability optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Mellal, Mohamed Arezki & Zio, Enrico, 2020. "System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Vahid Mahmoodian & Iman Dayarian & Payman Ghasemi Saghand & Yu Zhang & Hadi Charkhgard, 2022. "A Criterion Space Branch-and-Cut Algorithm for Mixed Integer Bilinear Maximum Multiplicative Programs," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1453-1470, May.
    11. Kim, Heungseob, 2018. "Maximization of system reliability with the consideration of component sequencing," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 64-72.
    12. Guilani, Pardis Pourkarim & Juybari, Mohammad N. & Ardakan, Mostafa Abouei & Kim, Heungseob, 2020. "Sequence optimization in reliability problems with a mixed strategy and heterogeneous backup scheme," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Peiravi, Abdossaber & Karbasian, Mahdi & Ardakan, Mostafa Abouei & Coit, David W., 2019. "Reliability optimization of series-parallel systems with K-mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 17-28.
    14. Cao, Ran & Coit, David W. & Hou, Wei & Yang, Yushu, 2020. "Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Zhu, Xiaoyan & Fu, Yuqiang & Yuan, Tao & Wu, Xinying, 2017. "Birnbaum importance based heuristics for multi-type component assignment problems," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 209-221.
    16. de Paula, Cassio Pereira & Visnadi, Lais Bittencourt & de Castro, Helio Fiori, 2019. "Multi-objective optimization in redundant system considering load sharing," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 17-27.
    17. Golmohammadi, Elnaz & Ardakan, Mostafa Abouei, 2022. "Reliability optimization problem with the mixed strategy, degrading components, and a periodic inspection and maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Peiravi, Abdossaber & Ardakan, Mostafa Abouei & Zio, Enrico, 2020. "A new Markov-based model for reliability optimization problems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Sedaghat, Niloofar & Ardakan, Mostafa Abouei, 2021. "G-mixed: A new strategy for redundant components in reliability optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Lin, Zhixian & Tao, Longlong & Wang, Shaoxuan & Yong, Nuo & Xia, Dongqin & Wang, Jianye & Ge, Daochuan, 2024. "A subset simulation analysis framework for rapid reliability evaluation of series-parallel cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    21. Hsieh, Tsung-Jung, 2023. "A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    22. Cai, Baoping & Li, Wenchao & Liu, Yiliu & Shao, Xiaoyan & Zhang, Yanping & Zhao, Yi & Liu, Zengkai & Ji, Renjie & Liu, Yonghong, 2021. "Modeling for evaluation of safety instrumented systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    2. Meisam Sadeghi & Emad Roghanian & Hamid Shahriari & Hassan Sadeghi, 2021. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 235(3), pages 509-528, June.
    3. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    4. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    5. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    6. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    7. Meisam Sadeghi & Emad Roghanian, 2017. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 231(5), pages 587-604, October.
    8. Zaretalab, Arash & Hajipour, Vahid & Tavana, Madjid, 2020. "Redundancy allocation problem with multi-state component systems and reliable supplier selection," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Qiu, Qingan & Cui, Lirong & Gao, Hongda & Yi, He, 2018. "Optimal allocation of units in sequential probability series systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 351-363.
    10. Wang, Wei & Lin, Mingqiang & Fu, Yongnian & Luo, Xiaoping & Chen, Hanghang, 2020. "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Dobani, Ehsan Ramezani & Ardakan, Mostafa Abouei & Davari-Ardakani, Hamed & Juybari, Mohammad N., 2019. "RRAP-CM: A new reliability-redundancy allocation problem with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Du, Mengyu & Li, Yan-Fu, 2020. "An investigation of new local search strategies in memetic algorithm for redundancy allocation in multi-state series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Chambari, Amirhossain & Najafi, Amir Abbas & Rahmati, Seyed Habib A. & Karimi, Aida, 2013. "An efficient simulated annealing algorithm for the redundancy allocation problem with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 158-164.
    15. Muhuri, Pranab K. & Nath, Rahul, 2019. "A novel evolutionary algorithmic solution approach for bilevel reliability-redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Hadipour, Hassan & Amiri, Maghsoud & Sharifi, Mani, 2019. "Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    17. Seyed Mohsen Mousavi & Najmeh Alikar & Madjid Tavana & Debora Di Caprio, 2019. "An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1175-1194, March.
    18. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 37-46.
    19. Abouei Ardakan, Mostafa & Zeinal Hamadani, Ali, 2014. "Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 132-139.
    20. Peiravi, Abdossaber & Karbasian, Mahdi & Ardakan, Mostafa Abouei & Coit, David W., 2019. "Reliability optimization of series-parallel systems with K-mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 17-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:157:y:2017:i:c:p:101-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.