IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v168y2017icp210-217.html
   My bibliography  Save this article

Weighted-feature and cost-sensitive regression model for component continuous degradation assessment

Author

Listed:
  • Liu, Jie
  • Zio, Enrico

Abstract

Conventional data-driven models for component degradation assessment try to minimize the average estimation accuracy on the entire available dataset. However, an imbalance may exist among different degradation states, because of the specific data size and/or the interest of the practitioners on the different degradation states. Specifically, reliable equipment may experience long periods in low-level degradation states and small times in high-level ones. Then, the conventional trained models may result in overfitting the low-level degradation states, as their data sizes overwhelm the high-level degradation states. In practice, it is usually more interesting to have accurate results on the high-level degradation states, as they are closer to the equipment failure. Thus, during the training of a data-driven model, larger error costs should be assigned to data points with high-level degradation states when the training objective minimizes the total costs on the training dataset. In this paper, an efficient method is proposed for calculating the costs for continuous degradation data. Considering the different influence of the features on the output, a weighted-feature strategy is integrated for the development of the data-driven model. Real data of leakage of a reactor coolant pump is used to illustrate the application and effectiveness of the proposed approach.

Suggested Citation

  • Liu, Jie & Zio, Enrico, 2017. "Weighted-feature and cost-sensitive regression model for component continuous degradation assessment," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 210-217.
  • Handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:210-217
    DOI: 10.1016/j.ress.2017.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016308328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Heping & Deloux, Estelle & Dieulle, Laurence, 2016. "A condition-based maintenance policy for multi-component systems with Lévy copulas dependence," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 44-55.
    2. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    3. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    4. Vale, Cecília & M. Lurdes, Simões, 2013. "Stochastic model for the geometrical rail track degradation process in the Portuguese railway Northern Line," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 91-98.
    5. Ramin Moghaddass & Ming Zuo, 2014. "Multistate degradation and supervised estimation methods for a condition-monitored device," IISE Transactions, Taylor & Francis Journals, vol. 46(2), pages 131-148.
    6. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    7. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    8. Rasmekomen, Nipat & Parlikad, Ajith Kumar, 2016. "Condition-based maintenance of multi-component systems with degradation state-rate interactions," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 1-10.
    9. Oh, Hyunseok & Choi, Seunghyuk & Kim, Keunsu & Youn, Byeng D. & Pecht, Michael, 2015. "An empirical model to describe performance degradation for warranty abuse detection in portable electronics," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 92-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    2. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    3. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    8. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    9. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    10. Tan, Zhixue & Zhong, Shisheng & Lin, Lin, 2019. "Trans-layer model learning: A hierarchical modeling strategy for real-time reliability evaluation of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 120-132.
    11. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Cholette, Michael E. & Yu, Hongyang & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2019. "Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 184-196.
    13. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    14. Efraim Laksman & Ann-Brith Strömberg & Michael Patriksson, 2020. "The stochastic opportunistic replacement problem, part III: improved bounding procedures," Annals of Operations Research, Springer, vol. 292(2), pages 711-733, September.
    15. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    16. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    17. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    18. Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    20. Liu, Qiannan & Ma, Lin & Wang, Naichao & Chen, Ankang & Jiang, Qihang, 2022. "A condition-based maintenance model considering multiple maintenance effects on the dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:168:y:2017:i:c:p:210-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.