IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v154y2016icp31-41.html
   My bibliography  Save this article

The use of a process mining technique to characterize the work process of main control room crews: A feasibility study

Author

Listed:
  • Park, Jinkyun
  • Jung, Jae-Yoon
  • Jung, Wondea

Abstract

In terms of supporting HRA (Human Reliability Analysis) practitioners, one of the urgent issues is to establish a set of objective criteria for determining the proper level of PSFs (Performance Shaping Factors), which are crucial for estimating the likelihood of HEPs (Human Error Probabilities). From this concern, the feasibility study of process mining techniques to characterize the work process of MCR (Main Control Room) crews is presented in this study. Three kinds of information requirements that are essential for determining the quality of the work process are first identified, and the application of process mining techniques is then introduced to address those requirements. As a case study, we illustrate the process mining techniques with communication logs that were collected from MCR crews exposed to simulated off-normal conditions. As a result, three kinds of insightful information (i.e., a work flow, time and spatial information along with a given work flow, and the flow of keywords describing what kinds of symptoms and/or knowledge were considered by MCR crews) are soundly extracted from communication logs. Consequently, it is expected that process mining techniques are effective for identifying a set of necessary information that would helpful for assessing the quality of the work process in an objective manner.

Suggested Citation

  • Park, Jinkyun & Jung, Jae-Yoon & Jung, Wondea, 2016. "The use of a process mining technique to characterize the work process of main control room crews: A feasibility study," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 31-41.
  • Handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:31-41
    DOI: 10.1016/j.ress.2016.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dohyun & Yang, Hanmo, 2012. "Evaluation of the risk frequency for hazards of runway incursion in Korea," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 31-35.
    2. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    3. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    4. Wang, Wei & Di Maio, Francesco & Zio, Enrico, 2020. "Considering the human operator cognitive process for the interpretation of diagnostic outcomes related to component failures and cyber security attacks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    2. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    3. Park, J. & Chang, Y.J. & Kim, Y. & Choi, S. & Kim, S. & Jung, W., 2017. "The use of the SACADA taxonomy to analyze simulation records: Insights and suggestions," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 174-183.
    4. Dustin C.S. Wagner & Kash Barker, 2014. "Statistical methods for modeling the risk of runway excursions," Journal of Risk Research, Taylor & Francis Journals, vol. 17(7), pages 885-901, August.
    5. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Chen, Yuanjiang & Feng, Wei & Jiang, Zhiqiang & Duan, Lingling & Cheng, Shuangyi, 2021. "An accident causation model based on safety information cognition and its application," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Park, Jinkyun & Kim, Yochan & Jung, Wondea, 2018. "Calculating nominal human error probabilities from the operation experience of domestic nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 215-225.
    8. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Selvik, Jon T. & Bellamy, Linda J., 2020. "Addressing human error when collecting failure cause information in the oil and gas industry: A review of ISO 14224:2016," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    10. Bolton, Matthew L. & Zheng, Xi & Kang, Eunsuk, 2021. "A formal method for including the probability of erroneous human task behavior in system analyses," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Kandemir, Cagatay & Celik, Metin, 2021. "Determining the error producing conditions in marine engineering maintenance and operations through HFACS-MMO," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Mario Fargnoli & Mara Lombardi & Daniele Puri, 2019. "Applying Hierarchical Task Analysis to Depict Human Safety Errors during Pesticide Use in Vineyard Cultivation," Agriculture, MDPI, vol. 9(7), pages 1-18, July.
    13. Jahangoshai Rezaee, Mustafa & Yousefi, Samuel, 2018. "An intelligent decision making approach for identifying and analyzing airport risks," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 14-27.
    14. Ham, Dong-Han & Park, Jinkyun, 2020. "Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    15. Bitterling, Cristian & Koreis, Jonas & Loske, Dominik & Klumpp, Matthias, 2022. "Comparing manual and automated production and picking systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 327-350, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    16. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:31-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.