IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v139y2015icp68-81.html
   My bibliography  Save this article

A multistage framework for reliability-based distribution expansion planning considering distributed generations by a self-adaptive global-based harmony search algorithm

Author

Listed:
  • Shivaie, Mojtaba
  • Ameli, Mohammad T.
  • Sepasian, Mohammad S.
  • Weinsier, Philip D.
  • Vahidinasab, Vahid

Abstract

In this paper, the authors present a new multistage framework for reliability-based Distribution Expansion Planning (DEP) in which expansion options are a reinforcement and/or installation of substations, feeders, and Distributed Generations (DGs). The proposed framework takes into account not only costs associated with investment, maintenance, and operation, but also expected customer interruption cost in the optimization as four problem objectives. At the same time, operational restrictions, Kirchhoff׳s laws, radial structure limitation, voltage limits, and capital expenditure budget restriction are considered as problem constraints. The proposed model is a non-convex optimization problem having a non-linear, mixed-integer nature. Hence, a hybrid Self-adaptive Global-based Harmony Search Algorithm (SGHSA) and Optimal Power Flow (OPF) were used and followed by a fuzzy satisfying method in order to obtain the final optimal solution. The SGHSA is a recently developed optimization algorithm which imitates the music improvisation process. In this process, the harmonists improvise their instrument pitches, searching for the perfect state of harmony. The planning methodology was demonstrated on the 27-node, 13.8-kV test system in order to demonstrate the feasibility and capability of the proposed model. Simulation results illustrated the sufficiency and profitableness of the newly developed framework, when compared with other methods.

Suggested Citation

  • Shivaie, Mojtaba & Ameli, Mohammad T. & Sepasian, Mohammad S. & Weinsier, Philip D. & Vahidinasab, Vahid, 2015. "A multistage framework for reliability-based distribution expansion planning considering distributed generations by a self-adaptive global-based harmony search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 68-81.
  • Handle: RePEc:eee:reensy:v:139:y:2015:i:c:p:68-81
    DOI: 10.1016/j.ress.2015.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015000599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tavakkoli-Moghaddam, R. & Safari, J. & Sassani, F., 2008. "Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 550-556.
    2. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    3. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.
    4. D E Nordgärd & T M Welte & J Heggset, 2010. "Using life curves as input to quantitative risk analysis in electricity distribution system asset management," Journal of Risk and Reliability, , vol. 224(2), pages 63-74, June.
    5. R Medjoudj & D Aissani & A Boubakeur & K D Haim, 2009. "Interruption modelling in electrical power distribution systems using the Weibull—Markov model," Journal of Risk and Reliability, , vol. 223(2), pages 145-157, June.
    6. Gitizadeh, Mohsen & Vahed, Ali Azizi & Aghaei, Jamshid, 2013. "Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms," Applied Energy, Elsevier, vol. 101(C), pages 655-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    2. Mandhir Kumar Verma & Vivekananda Mukherjee & Vinod Kumar Yadav & Santosh Ghosh, 2020. "Constraints for effective distribution network expansion planning: an ample review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 531-546, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    2. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    3. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    5. Amirhossain Chambari & Javad Sadeghi & Fakhri Bakhtiari & Reza Jahangard, 2016. "A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 426-442, June.
    6. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    7. Jia, Heping & Ding, Yi & Peng, Rui & Liu, Hanlin & Song, Yonghua, 2020. "Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    9. Xian Zhao & Jing Zhang & Xiaoyue Wang, 2019. "Joint optimization of components redundancy, spares inventory and repairmen allocation for a standby series system," Journal of Risk and Reliability, , vol. 233(4), pages 623-638, August.
    10. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    11. Li, Zhaojun & Liao, Haitao & Coit, David W., 2009. "A two-stage approach for multi-objective decision making with applications to system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1585-1592.
    12. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    13. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    14. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    15. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    17. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    18. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    19. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2013. "Cold-standby sequencing optimization considering mission cost," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 28-34.
    20. Edward J. Oughton & Daniel Ralph & Raghav Pant & Eireann Leverett & Jennifer Copic & Scott Thacker & Rabia Dada & Simon Ruffle & Michelle Tuveson & Jim W Hall, 2019. "Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2012-2031, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:139:y:2015:i:c:p:68-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.