IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v134y2015icp178-187.html
   My bibliography  Save this article

Evaluation and comparison of alternative fleet-level selective maintenance models

Author

Listed:
  • Schneider, Kellie
  • Richard Cassady, C.

Abstract

Fleet-level selective maintenance refers to the process of identifying the subset of maintenance actions to perform on a fleet of repairable systems when the maintenance resources allocated to the fleet are insufficient for performing all desirable maintenance actions. The original fleet-level selective maintenance model is designed to maximize the probability that all missions in a future set are completed successfully. We extend this model in several ways. First, we consider a cost-based optimization model and show that a special case of this model maximizes the expected value of the number of successful missions in the future set. We also consider the situation in which one or more of the future missions may be canceled. These models and the original fleet-level selective maintenance optimization models are nonlinear. Therefore, we also consider an alternative model in which the objective function can be linearized. We show that the alternative model is a good approximation to the other models.

Suggested Citation

  • Schneider, Kellie & Richard Cassady, C., 2015. "Evaluation and comparison of alternative fleet-level selective maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 178-187.
  • Handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:178-187
    DOI: 10.1016/j.ress.2014.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014002579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John J. McCall, 1965. "Maintenance Policies for Stochastically Failing Equipment: A Survey," Management Science, INFORMS, vol. 11(5), pages 493-524, March.
    2. Lust, T. & Roux, O. & Riane, F., 2009. "Exact and heuristic methods for the selective maintenance problem," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1166-1177, September.
    3. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    4. Richard Cassady, C. & Paul Murdock, W. & Pohl, Edward A., 2001. "Selective maintenance for support equipment involving multiple maintenance actions," European Journal of Operational Research, Elsevier, vol. 129(2), pages 252-258, March.
    5. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    6. Pandey, Mayank & Zuo, Ming J. & Moghaddass, Ramin & Tiwari, M.K., 2013. "Selective maintenance for binary systems under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 42-51.
    7. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lujie & Yang, Jun & Kong, Xuefeng & Xiao, Yiyong, 2022. "Multi-mission selective maintenance and repairpersons assignment problem with stochastic durations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    3. Diallo, Claver & Venkatadri, Uday & Khatab, Abdelhakim & Liu, Zhuojun, 2018. "Optimal selective maintenance decisions for large serial k-out-of-n: G systems under imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 234-245.
    4. Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2022. "A two-stage stochastic programming model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Wenbin Cao & Xisheng Jia & Yu Liu & Qiwei Hu & Jianmin Zhao, 2019. "Selective maintenance optimisation considering random common cause failures and imperfect maintenance," Journal of Risk and Reliability, , vol. 233(3), pages 427-443, June.
    6. Dourado, Arinan & Viana, Felipe A.C., 2021. "Early life failures and services of industrial asset fleets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Ma, Weining & Zhang, Qin & Xiahou, Tangfan & Liu, Yu & Jia, Xisheng, 2023. "Integrated selective maintenance and task assignment optimization for multi-state systems executing multiple missions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Jiang, Tao & Liu, Yu, 2020. "Selective maintenance strategy for systems executing multiple consecutive missions with uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Khatab, A. & Aghezzaf, E.-H., 2016. "Selective maintenance optimization when quality of imperfect maintenance actions are stochastic," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 182-189.
    10. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    11. A. Khatab & C. Diallo & E.-H. Aghezzaf & U. Venkatadri, 2022. "Optimization of the integrated fleet-level imperfect selective maintenance and repairpersons assignment problem," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 703-718, March.
    12. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    13. Chaabane, K. & Khatab, A. & Diallo, C. & Aghezzaf, E.-H. & Venkatadri, U., 2020. "Integrated imperfect multimission selective maintenance and repairpersons assignment problem," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    14. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
    15. Xisheng Jia & Wenbin Cao & Qiwei Hu, 2019. "Selective maintenance optimization for random phased-mission systems subject to random common cause failures," Journal of Risk and Reliability, , vol. 233(3), pages 379-400, June.
    16. Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2024. "Stochastic programming for selective maintenance optimization with uncertainty in the next mission conditions," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Dao, Cuong D. & Zuo, Ming J., 2017. "Optimal selective maintenance for multi-state systems in variable loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 171-180.
    18. Sharma, Pankaj & Kulkarni, Makarand S & Yadav, Vikas, 2017. "A simulation based optimization approach for spare parts forecasting and selective maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 274-289.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaabane, K. & Khatab, A. & Diallo, C. & Aghezzaf, E.-H. & Venkatadri, U., 2020. "Integrated imperfect multimission selective maintenance and repairpersons assignment problem," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    2. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Sharma, Pankaj & Kulkarni, Makarand S & Yadav, Vikas, 2017. "A simulation based optimization approach for spare parts forecasting and selective maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 274-289.
    4. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    5. Wenbin Cao & Xisheng Jia & Yu Liu & Qiwei Hu & Jianmin Zhao, 2019. "Selective maintenance optimisation considering random common cause failures and imperfect maintenance," Journal of Risk and Reliability, , vol. 233(3), pages 427-443, June.
    6. Diallo, Claver & Venkatadri, Uday & Khatab, Abdelhakim & Liu, Zhuojun, 2018. "Optimal selective maintenance decisions for large serial k-out-of-n: G systems under imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 234-245.
    7. Khatab, A. & Aghezzaf, E.-H., 2016. "Selective maintenance optimization when quality of imperfect maintenance actions are stochastic," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 182-189.
    8. Jiang, Tao & Liu, Yu, 2020. "Selective maintenance strategy for systems executing multiple consecutive missions with uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Xisheng Jia & Wenbin Cao & Qiwei Hu, 2019. "Selective maintenance optimization for random phased-mission systems subject to random common cause failures," Journal of Risk and Reliability, , vol. 233(3), pages 379-400, June.
    10. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    11. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    12. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    13. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    14. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
    16. Hamzea Al-Jabouri & Ahmed Saif & Claver Diallo, 2023. "Robust selective maintenance optimization of series–parallel mission-critical systems subject to maintenance quality uncertainty," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.
    17. Liu, Lujie & Yang, Jun & Kong, Xuefeng & Xiao, Yiyong, 2022. "Multi-mission selective maintenance and repairpersons assignment problem with stochastic durations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2022. "A two-stage stochastic programming model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Lust, T. & Roux, O. & Riane, F., 2009. "Exact and heuristic methods for the selective maintenance problem," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1166-1177, September.
    20. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:178-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.