IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v74y2013icp66-74.html
   My bibliography  Save this article

The impact of climate change on the benefit of a rain barrel sharing network

Author

Listed:
  • Seo, Yongwon
  • Ahn, Jungkyu
  • Kim, Young-Oh

Abstract

The assessment of the impact of climate change depends not only on quantitative changes in precipitation but also system characteristics that can be changed and enhanced. This study investigated the effect of building the shared network of a rainwater harvesting system as an adaptation to climate change scenarios. The performance of a rain barrel network under three climate change scenarios and three global circulation models (GCM) is examined. A sample community composed of four prospective users with individual storage is tested with various forms of shared connections. Most importantly, the results show that the benefit from shared rain barrels greatly increases under the climate change conditions compared with the historical rainfall data. Especially, for high reliabilities, the results indicate that the benefit of a rain barrel network increases under future climate change scenarios, whereas it does not show apparent improvement for low reliabilities. However, the performance of a rain barrel network is highly dependent on location and climate change scenarios. In contrast, the GCM does not considerably affect the performance of the shared network. The results of this study highlight the needs to establish sharing networks of rainwater harvesting systems under the climate change conditions, which would significantly increase the benefit of the entire community.

Suggested Citation

  • Seo, Yongwon & Ahn, Jungkyu & Kim, Young-Oh, 2013. "The impact of climate change on the benefit of a rain barrel sharing network," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 66-74.
  • Handle: RePEc:eee:recore:v:74:y:2013:i:c:p:66-74
    DOI: 10.1016/j.resconrec.2013.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913000566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Mukheibir, 2008. "Water Resources Management Strategies for Adaptation to Climate-Induced Impacts in South Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1259-1276, September.
    2. Fox, P. & Rockstrom, J. & Barron, J., 2005. "Risk analysis and economic viability of water harvesting for supplemental irrigation in semi-arid Burkina Faso and Kenya," Agricultural Systems, Elsevier, vol. 83(3), pages 231-250, March.
    3. Su, Ming-Daw & Lin, Chun-Hung & Chang, Ling-Fang & Kang, Jui-Lin & Lin, Mei-Chun, 2009. "A probabilistic approach to rainwater harvesting systems design and evaluation," Resources, Conservation & Recycling, Elsevier, vol. 53(7), pages 393-399.
    4. Olanike Aladenola & Omotayo Adeboye, 2010. "Assessing the Potential for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2129-2137, August.
    5. Youn, Seok-goo & Chung, Eun-Sung & Kang, Won Gu & Sung, Jang Hyun, 2012. "Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 136-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youn, Seok-goo & Chung, Eun-Sung & Kang, Won Gu & Sung, Jang Hyun, 2012. "Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 136-144.
    2. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    3. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    4. Q. Tan & G. Huang & Y. Cai, 2013. "Multi-Source Multi-Sector Sustainable Water Supply Under Multiple Uncertainties: An Inexact Fuzzy-Stochastic Quadratic Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 451-473, January.
    5. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    6. Kwangsik Jung & Taeseop Lee & Byeong Choi & Seungkwan Hong, 2015. "Rainwater Harvesting System for Contiunous Water Supply to the Regions with High Seasonal Rainfall Variations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 961-972, February.
    7. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    8. Sanfo, Safiétou & Gérard, Françoise, 2012. "Public policies for rural poverty alleviation: The case of agricultural households in the Plateau Central area of Burkina Faso," Agricultural Systems, Elsevier, vol. 110(C), pages 1-9.
    9. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    10. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    11. Lúcio Proença & Enedir Ghisi, 2013. "Assessment of Potable Water Savings in Office Buildings Considering Embodied Energy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 581-599, January.
    12. Gabriel Yoshino & Lindemberg Fernandes & Júnior Ishihara & Adnilson Silva, 2014. "Use of rainwater for non-potable purposes in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 431-442, April.
    13. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    14. Dagnachew Adugna & Marina Bergen Jensen & Brook Lemma & Geremew Sahilu Gebrie, 2018. "Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    15. Monzur Alam Imteaz & Vassiliki Boulomytis, 2022. "Improvement of Rainwater Harvesting Analysis Through an Hourly Timestep Model in Comparison with a Daily Timestep Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2611-2622, June.
    16. Abu-Zreig, Majed & Tamimi, Abdullah, 2011. "Field evaluation of sand-ditch water harvesting technique in Jordan," Agricultural Water Management, Elsevier, vol. 98(8), pages 1291-1296, May.
    17. Kemeze, Francis H., 2020. "Demand for Supplemental Irrigation via Small-Scale Water Harvesting," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304569, Agricultural and Applied Economics Association.
    18. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    19. Shiguang Chen & Hongwei Sun & Qiuli Chen & Song Liu & Xuebin Chen, 2023. "An Innovative Approach to Predicting the Financial Prospects of a Rainwater Harvesting System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3169-3185, June.
    20. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:74:y:2013:i:c:p:66-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.