IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v53y2009i12p680-687.html
   My bibliography  Save this article

Copper cycle in China and its entropy analysis

Author

Listed:
  • Yue, Q.
  • Lu, Z.W.
  • Zhi, S.K.

Abstract

Copper cycle analysis approaches have been broadly investigated for sustainable development of copper industry in China. There are four stages in the life cycle of copper products, including mining & processing, fabrication & manufacture, use and reclamation. The 2005 copper cycle in China, analyzed by copper-flow diagram of the copper products life cycle with time factor, indicates that the copper ore index and copper scrap index were 0.78t/t and 0.063t/t, respectively; and copper resource efficiency was 1.3t/t. To ascertain the degree of both aggregating and dispersing of the copper in the life cycle of copper products, the substance flow analysis with the index of entropy and the calculating method of entropy was presented. The variation of entropy along copper cycle was calculated based on the analysis of the life cycle of copper products in China in 2005. The entropies at the five nodes along copper cycle were 0.26, 0.046, 0.24, 0.60 and 0.25, respectively. The variation ratio of relative entropy in the whole system was −2.9%, which showed the copper-contained materials were congregated after the whole products life cycle. The same method was also applied to the variation of entropy along copper products life cycle in China in 2002. The discussion was focused on the results of these two years. The values of entropy at the five nodes along copper cycle in 2005 were all lower than those in 2002. The entropy at the five nodes along copper products life cycle in 2005 was extracted through two scenes under different technical indices, including scene one: 0.26, 0.032, 0.23, 0.60 and 0.17, respectively; and scene two: 0.26, 0.023, 0.23, 0.60 and 0.096, respectively. The values of entropy are effectively reduced, especially from the fourth to the fifth node, which is the obsolete copper products reclaiming stage.

Suggested Citation

  • Yue, Q. & Lu, Z.W. & Zhi, S.K., 2009. "Copper cycle in China and its entropy analysis," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 680-687.
  • Handle: RePEc:eee:recore:v:53:y:2009:i:12:p:680-687
    DOI: 10.1016/j.resconrec.2009.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344909001013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik Hansen, 2002. "Experience with the Use of Substance Flow Analysis in Denmark," Journal of Industrial Ecology, Yale University, vol. 6(3‐4), pages 201-219, July.
    2. Rechberger, H. & Graedel, T. E., 2002. "The contemporary European copper cycle: statistical entropy analysis," Ecological Economics, Elsevier, vol. 42(1-2), pages 59-72, August.
    3. Spatari, S. & Bertram, M. & Fuse, K. & Graedel, T. E. & Rechberger, H., 2002. "The contemporary European copper cycle: 1 year stocks and flows," Ecological Economics, Elsevier, vol. 42(1-2), pages 27-42, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Minxi & Chen, Wu & Li, Xin, 2015. "Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 36-48.
    2. Bai, Lu & Qiao, Qi & Li, Yanping & Wan, Si & Xie, Minghui & Chai, Fahe, 2015. "Statistical entropy analysis of substance flows in a lead smelting process," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 118-128.
    3. Renaud, Karine M. & Manley, Ross & Nassar, Nedal T., 2023. "A comparison of copper use in China and India as a proxy for their economic development," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xueyi & Song, Yu, 2008. "Substance flow analysis of copper in China," Resources, Conservation & Recycling, Elsevier, vol. 52(6), pages 874-882.
    2. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    3. Kapur, Amit, 2006. "The future of the red metal—A developing country perspective from India," Resources, Conservation & Recycling, Elsevier, vol. 47(2), pages 160-182.
    4. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    5. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    6. Graedel, T. E., 2002. "The contemporary European copper cycle: introduction," Ecological Economics, Elsevier, vol. 42(1-2), pages 5-7, August.
    7. Esther Thiébaud & Lorenz M. Hilty & Mathias Schluep & Heinz W. Böni & Martin Faulstich, 2018. "Where Do Our Resources Go? Indium, Neodymium, and Gold Flows Connected to the Use of Electronic Equipment in Switzerland," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    8. Torsten Hummen & Stefanie Hellweg & Ramin Roshandel, 2023. "Optimizing Lifespan of Circular Products: A Generic Dynamic Programming Approach for Energy-Using Products," Energies, MDPI, vol. 16(18), pages 1-27, September.
    9. Klinglmair, Manfred & Fellner, Johann, 2011. "Historical iron and steel recovery in times of raw material shortage: The case of Austria during World War I," Ecological Economics, Elsevier, vol. 72(C), pages 179-187.
    10. Truttmann, Nina & Rechberger, Helmut, 2006. "Contribution to resource conservation by reuse of electrical and electronic household appliances," Resources, Conservation & Recycling, Elsevier, vol. 48(3), pages 249-262.
    11. Geyer, R. & Davis, J. & Ley, J. & He, J. & Clift, R. & Kwan, A. & Sansom, M. & Jackson, T., 2007. "Time-dependent material flow analysis of iron and steel in the UK," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 101-117.
    12. Shaoli Liu & Xin Li & Minxi Wang, 2016. "Analysis of Aluminum Resource Supply Structure and Guarantee Degree in China Based on Sustainable Perspective," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    13. Yuan, Zengwei & Liu, Xin & Wu, Huijun & Zhang, Ling & Bi, Jun, 2011. "Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China," Ecological Modelling, Elsevier, vol. 222(8), pages 1534-1543.
    14. Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2017. "Urban Mines of Copper: Size and Potential for Recycling in the EU," Resources, MDPI, vol. 6(1), pages 1-14, January.
    15. Simões, Pedro & Marques, Rui Cunha, 2011. "How does the operational environment affect utility performance? A parametric study on the waste sector," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 695-702.
    16. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    17. Tanimoto, Armando H. & Gabarrell Durany, Xavier & Villalba, Gara & Pires, Armando Caldeira, 2010. "Material flow accounting of the copper cycle in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 20-28.
    18. Mao, J.S. & Dong, Jaimee & Graedel, T.E., 2008. "The multilevel cycle of anthropogenic lead," Resources, Conservation & Recycling, Elsevier, vol. 52(8), pages 1058-1064.
    19. Lanzano, T. & Bertram, M. & De Palo, M. & Wagner, C. & Zyla, K. & Graedel, T.E., 2006. "The contemporary European silver cycle," Resources, Conservation & Recycling, Elsevier, vol. 46(1), pages 27-43.
    20. Helga Weisz & Heinz Schandl, 2008. "Materials Use Across World Regions," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 629-636, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:53:y:2009:i:12:p:680-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.