IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v87y2004i2p195-205.html
   My bibliography  Save this article

A branch and bound algorithm for sub-contractor selection in agile manufacturing environment

Author

Listed:
  • Ip, W. H.
  • Yung, K. L.
  • Wang, Dingwei

Abstract

No abstract is available for this item.

Suggested Citation

  • Ip, W. H. & Yung, K. L. & Wang, Dingwei, 2004. "A branch and bound algorithm for sub-contractor selection in agile manufacturing environment," International Journal of Production Economics, Elsevier, vol. 87(2), pages 195-205, January.
  • Handle: RePEc:eee:proeco:v:87:y:2004:i:2:p:195-205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(03)00125-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talluri, Srinivas & Baker, R. C. & Sarkis, Joseph, 1999. "A framework for designing efficient value chain networks," International Journal of Production Economics, Elsevier, vol. 62(1-2), pages 133-144, May.
    2. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    3. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volpentesta, Antonio P., 2008. "Hypernetworks in a directed hypergraph," European Journal of Operational Research, Elsevier, vol. 188(2), pages 390-405, July.
    2. Wu, Chong & Barnes, David, 2010. "Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimisation approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 284-293, June.
    3. Ivanov, Dmitry & Sokolov, Boris & Kaeschel, Joachim, 2010. "A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations," European Journal of Operational Research, Elsevier, vol. 200(2), pages 409-420, January.
    4. Saen, Reza Farzipoor, 2007. "Suppliers selection in the presence of both cardinal and ordinal data," European Journal of Operational Research, Elsevier, vol. 183(2), pages 741-747, December.
    5. Huang, Xiaoxia, 2007. "Optimal project selection with random fuzzy parameters," International Journal of Production Economics, Elsevier, vol. 106(2), pages 513-522, April.
    6. Keunho Choi & Gunwoo Kim & Yongmoo Suh & Donghee Yoo, 2017. "Assignment of collaborators to multiple business problems using genetic algorithm," Information Systems and e-Business Management, Springer, vol. 15(4), pages 877-895, November.
    7. Dinu Simona & Pacuraru Raluca, 2011. "Intelligent modeling method based on genetic algorithm for partner selection in virtual organizations," Business and Economic Horizons (BEH), Prague Development Center, vol. 5(2), pages 23-34, April.
    8. Simona, Dinu & Raluca, Pacuraru, 2011. "Intelligent modeling method based on genetic algorithm for partner selection in virtual organizations," Business and Economic Horizons (BEH), Prague Development Center (PRADEC), vol. 5(2), pages 1-12, April.
    9. Keunho Choi & Gunwoo Kim & Yongmoo Suh & Donghee Yoo, 0. "Assignment of collaborators to multiple business problems using genetic algorithm," Information Systems and e-Business Management, Springer, vol. 0, pages 1-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona, Dinu & Raluca, Pacuraru, 2011. "Intelligent modeling method based on genetic algorithm for partner selection in virtual organizations," Business and Economic Horizons (BEH), Prague Development Center (PRADEC), vol. 5(2), pages 1-12, April.
    2. Dinu Simona & Pacuraru Raluca, 2011. "Intelligent modeling method based on genetic algorithm for partner selection in virtual organizations," Business and Economic Horizons (BEH), Prague Development Center, vol. 5(2), pages 23-34, April.
    3. Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
    4. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    5. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    6. Byung-Cheon Choi & Changmuk Kang, 2019. "A linear time–cost tradeoff problem with multiple milestones under a comb graph," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 341-361, August.
    7. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    8. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    9. Cakravastia, Andi & Toha, Isa S. & Nakamura, Nobuto, 2002. "A two-stage model for the design of supply chain networks," International Journal of Production Economics, Elsevier, vol. 80(3), pages 231-248, December.
    10. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1994. "Due‐date assignment and early/tardy scheduling on identical parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 17-32, February.
    11. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    12. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    13. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    14. Li, Y. & Ip, W. H. & Wang, D. W., 1998. "Genetic algorithm approach to earliness and tardiness production scheduling and planning problem," International Journal of Production Economics, Elsevier, vol. 54(1), pages 65-76, January.
    15. Mattfeld, D. C. & Kopfer, H., 2003. "Terminal operations management in vehicle transshipment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(5), pages 435-452, June.
    16. M. Vanhoucke, 2006. "A scatter search procedure for maximizing the net present value of a project under renewable resource constraints," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/417, Ghent University, Faculty of Economics and Business Administration.
    17. Kate, H.A. ten & Wijngaard, J. & Zijm, W.H.M., 1995. "Minimizing weighted total earliness, total tardiness and setup costs," Research Report 95A37, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    18. T C E Cheng & L Kang & C T Ng, 2004. "Due-date assignment and single machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 198-203, February.
    19. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    20. Yamashita, Denise Sato & Armentano, Vinicius Amaral & Laguna, Manuel, 2006. "Scatter search for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 169(2), pages 623-637, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:87:y:2004:i:2:p:195-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.