IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v151y2014icp180-185.html
   My bibliography  Save this article

Flexible service policies for a Markov inventory system with two demand classes

Author

Listed:
  • Liu, Mingwu
  • Feng, Mengying
  • Wong, Chee Yew

Abstract

This paper explores flexible service policies for an (r, Q) Markov inventory system with two classes of customers, ordinary and prioritized customers. When the on-hand inventory drops to pre-determined safety level r, arrival ordinary customers receive service at probability p. Firstly, the inventory level state transitions equation is set up. The steady-state probability distribution and the system's performance measures which are used for the inventory control are derived. Next, a long-run average inventory cost function is established and a mixed integer optimization model is set up. And, an improved genetic algorithm for the optimum control policies is presented. Finally, the optimal inventory control polices and the sensitivities are investigated through numerical experiments.

Suggested Citation

  • Liu, Mingwu & Feng, Mengying & Wong, Chee Yew, 2014. "Flexible service policies for a Markov inventory system with two demand classes," International Journal of Production Economics, Elsevier, vol. 151(C), pages 180-185.
  • Handle: RePEc:eee:proeco:v:151:y:2014:i:c:p:180-185
    DOI: 10.1016/j.ijpe.2013.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313004519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannidis, Stratos, 2011. "An inventory and order admission control policy for production systems with two customer classes," International Journal of Production Economics, Elsevier, vol. 131(2), pages 663-673, June.
    2. P Melchiors & R Dekker & M J Kleijn, 2000. "Inventory rationing in an (s, Q) inventory model with lost sales and two demand classes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 111-122, January.
    3. Vinayak Deshpande & Morris A. Cohen & Karen Donohue, 2003. "A Threshold Inventory Rationing Policy for Service-Differentiated Demand Classes," Management Science, INFORMS, vol. 49(6), pages 683-703, June.
    4. Steven Nahmias & W. Steven Demmy, 1981. "Operating Characteristics of an Inventory System with Rationing," Management Science, INFORMS, vol. 27(11), pages 1236-1245, November.
    5. Arthur F. Veinott, 1965. "Optimal Policy in a Dynamic, Single Product, Nonstationary Inventory Model with Several Demand Classes," Operations Research, INFORMS, vol. 13(5), pages 761-778, October.
    6. Zhao, Ning & Lian, Zhaotong, 2011. "A queueing-inventory system with two classes of customers," International Journal of Production Economics, Elsevier, vol. 129(1), pages 225-231, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Hsien Tseng & Jia-Chen Yu, 2019. "Data-Driven Iron and Steel Inventory Control Policies," Mathematics, MDPI, vol. 7(8), pages 1-15, August.
    2. Thulaseedharan Salini Sinu Lal & Varghese Chaukayil Joshua & Vladimir Vishnevsky & Dmitry Kozyrev & Achyutha Krishnamoorthy, 2022. "A Multi-Type Queueing Inventory System—A Model for Selection and Allocation of Spectra," Mathematics, MDPI, vol. 10(5), pages 1-11, February.
    3. Stratos Ioannidis & Alexandros S. Xanthopoulos & Ioannis Sarantis & Dimitrios E. Koulouriotis, 2021. "Joint production, inventory rationing, and order admission control of a stochastic manufacturing system with setups," Operational Research, Springer, vol. 21(2), pages 827-855, June.
    4. Manafzadeh Dizbin, Nima & Tan, Barış, 2020. "Optimal control of production-inventory systems with correlated demand inter-arrival and processing times," International Journal of Production Economics, Elsevier, vol. 228(C).
    5. Umay Uzunoglu Kocer & Bahar Yalcin, 2020. "Continuous review (s, Q) inventory system with random lifetime and two demand classes," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 104-118, March.
    6. Fathi, Mahdi & Khakifirooz, Marzieh & Diabat, Ali & Chen, Huangen, 2021. "An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network," International Journal of Production Economics, Elsevier, vol. 237(C).
    7. Mohammad Najjartabar Bisheh & G. Reza Nasiri & Esmaeil Esmaeili & Hamid Davoudpour & Shing I. Chang, 2022. "A new supply chain distribution network design for two classes of customers using transfer recurrent neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2604-2618, October.
    8. Serife Ozkar & Umay Uzunoglu Kocer, 2021. "Two-commodity queueing-inventory system with two classes of customers," OPSEARCH, Springer;Operational Research Society of India, vol. 58(1), pages 234-256, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ElHafsi, Mohsen & Fang, Jianxin & Hamouda, Essia, 2021. "Optimal production and inventory control of multi-class mixed backorder and lost sales demand class models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 147-161.
    2. Alfieri, Arianna & Pastore, Erica & Zotteri, Giulio, 2017. "Dynamic inventory rationing: How to allocate stock according to managerial priorities. An empirical study," International Journal of Production Economics, Elsevier, vol. 189(C), pages 14-29.
    3. Karin T. Möllering & Ulrich W. Thonemann, 2008. "An optimal critical level policy for inventory systems with two demand classes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 632-642, October.
    4. Zümbül Atan & Lawrence V. Snyder & George R. Wilson, 2018. "Transshipment policies for systems with multiple retailers and two demand classes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 159-186, January.
    5. Weihua Zhou & Chung‐Yee Lee & David Wu, 2011. "Optimal control of a capacitated inventory system with multiple demand classes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 43-58, February.
    6. Stratos Ioannidis & Alexandros S. Xanthopoulos & Ioannis Sarantis & Dimitrios E. Koulouriotis, 2021. "Joint production, inventory rationing, and order admission control of a stochastic manufacturing system with setups," Operational Research, Springer, vol. 21(2), pages 827-855, June.
    7. Tan, Tarkan & Güllü, Refik & Erkip, Nesim, 2009. "Using imperfect advance demand information in ordering and rationing decisions," International Journal of Production Economics, Elsevier, vol. 121(2), pages 665-677, October.
    8. Samii, Amir-Behzad & Pibernik, Richard & Yadav, Prashant & Vereecke, Ann, 2012. "Reservation and allocation policies for influenza vaccines," European Journal of Operational Research, Elsevier, vol. 222(3), pages 495-507.
    9. Quan-Lin Li & Yi-Meng Li & Jing-Yu Ma & Heng-Li Liu, 2023. "A complete algebraic solution to the optimal dynamic rationing policy in the stock-rationing queue with two demand classes," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-54, April.
    10. Wang, Daqin & Tang, Ou & Zhang, Lihua, 2015. "A note on the rationing policies of multiple demand classes with lost sales," International Journal of Production Economics, Elsevier, vol. 165(C), pages 145-154.
    11. Hasan Arslan & Stephen C. Graves & Thomas A. Roemer, 2007. "A Single-Product Inventory Model for Multiple Demand Classes," Management Science, INFORMS, vol. 53(9), pages 1486-1500, September.
    12. Hung, Yi-Feng & Hsiao, Jui-Yi, 2013. "Inventory rationing decision models during replenishment lead time," International Journal of Production Economics, Elsevier, vol. 144(1), pages 290-300.
    13. FadIloglu, Mehmet Murat & Bulut, Önder, 2010. "A dynamic rationing policy for continuous-review inventory systems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 675-685, May.
    14. Umay Uzunoglu Kocer & Bahar Yalcin, 2020. "Continuous review (s, Q) inventory system with random lifetime and two demand classes," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 104-118, March.
    15. van Jaarsveld, W.L. & Dekker, R., 2009. "Finding optimal policies in the (S - 1, S ) lost sales inventory model with multiple demand classes," Econometric Institute Research Papers EI 2009-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    17. Bing Lin & Shaoxiang Chen & Yi Feng & Jianjun Xu, 2018. "The Joint Stock and Capacity Rationings of a Make-To-Stock System with Flexible Demand," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-27, February.
    18. Ayanso, Anteneh & Diaby, Moustapha & Nair, Suresh K., 2006. "Inventory rationing via drop-shipping in Internet retailing: A sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 171(1), pages 135-152, May.
    19. Chen-Ritzo, Ching-Hua & Ervolina, Tom & Harrison, Terry P. & Gupta, Barun, 2011. "Component rationing for available-to-promise scheduling in configure-to-order systems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 57-65, May.
    20. Gabor, Adriana F. & van Ommeren, Jan-Kees & Sleptchenko, Andrei, 2022. "An inventory model with discounts for omnichannel retailers of slow moving items," European Journal of Operational Research, Elsevier, vol. 300(1), pages 58-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:151:y:2014:i:c:p:180-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.