IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v121y2009i1p176-182.html
   My bibliography  Save this article

A perishable inventory model with Markovian renewal demands

Author

Listed:
  • Lian, Zhaotong
  • Liu, Xiaoming
  • Zhao, Ning

Abstract

In the inventory model, people usually assume that the inter-demand time is independently identical distributed which may not be true in reality. Here we study an (s,S) continuous review model for items with an exponential random lifetime and a general Markovian renewal demand process. By constructing Markovian renewal equations, we derive the mean and the variance of the reorder cycle time and lead to a simple expression for the total expected long run cost rate. The numerical results illustrate the system behavior and lead to managerial insights into controlling such inventory systems.

Suggested Citation

  • Lian, Zhaotong & Liu, Xiaoming & Zhao, Ning, 2009. "A perishable inventory model with Markovian renewal demands," International Journal of Production Economics, Elsevier, vol. 121(1), pages 176-182, September.
  • Handle: RePEc:eee:proeco:v:121:y:2009:i:1:p:176-182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00155-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suresh P. Sethi & Feng Cheng, 1997. "Optimality of ( s , S ) Policies in Inventory Models with Markovian Demand," Operations Research, INFORMS, vol. 45(6), pages 931-939, December.
    2. Chiu, Huan Neng, 1995. "An approximation to the continuous review inventory model with perishable items and lead times," European Journal of Operational Research, Elsevier, vol. 87(1), pages 93-108, November.
    3. Morris A. Cohen, 1976. "Analysis of Single Critical Number Ordering Policies for Perishable Inventories," Operations Research, INFORMS, vol. 24(4), pages 726-741, August.
    4. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    5. Ravichandran, N., 1995. "Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand," European Journal of Operational Research, Elsevier, vol. 84(2), pages 444-457, July.
    6. Brant E. Fries, 1975. "Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime," Operations Research, INFORMS, vol. 23(1), pages 46-61, February.
    7. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    8. Chiu, Huan Neng, 1995. "A heuristic (R, T) periodic review perishable inventory model with lead times," International Journal of Production Economics, Elsevier, vol. 42(1), pages 1-15, November.
    9. Dan Chazan & Shmuel Gal, 1977. "A Markovian Model for a Perishable Product Inventory," Management Science, INFORMS, vol. 23(5), pages 512-521, January.
    10. Purushottaman Nandakumar & Thomas E. Morton, 1993. "Near Myopic Heuristics for the Fixed-Life Perishability Problem," Management Science, INFORMS, vol. 39(12), pages 1490-1498, December.
    11. Howard J. Weiss, 1980. "Optimal Ordering Policies for Continuous Review Perishable Inventory Models," Operations Research, INFORMS, vol. 28(2), pages 365-374, April.
    12. Steven Nahmias, 1976. "Myopic Approximations for the Perishable Inventory Problem," Management Science, INFORMS, vol. 22(9), pages 1002-1008, May.
    13. Steven Nahmias, 1978. "The Fixed-Charge Perishable Inventory Problem," Operations Research, INFORMS, vol. 26(3), pages 464-481, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.
    2. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    3. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2016. "A coordinated multi-item inventory system for perishables with random lifetime," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 226-237.
    4. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    5. Kouki, Chaaben & Sahin, Evren & Jemaï, Zied & Dallery, Yves, 2013. "Assessing the impact of perishability and the use of time temperature technologies on inventory management," International Journal of Production Economics, Elsevier, vol. 143(1), pages 72-85.
    6. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    7. Umay Uzunoglu Kocer & Bahar Yalcin, 2020. "Continuous review (s, Q) inventory system with random lifetime and two demand classes," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 104-118, March.
    8. Gharbi, Ali & Kenné, Jean-Pierre & Kaddachi, Rawia, 2022. "Dynamic optimal control and simulation for unreliable manufacturing systems under perishable product and shelf life variability," International Journal of Production Economics, Elsevier, vol. 247(C).
    9. Liang, Zhenglin & Liu, Bin & Xie, Min & Parlikad, Ajith Kumar, 2020. "Condition-based maintenance for long-life assets with exposure to operational and environmental risks," International Journal of Production Economics, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tekin, Eylem & Gurler, Ulku & Berk, Emre, 2001. "Age-based vs. stock level control policies for a perishable inventory system," European Journal of Operational Research, Elsevier, vol. 134(2), pages 309-329, October.
    2. Xiuli Chao & Xiting Gong & Cong Shi & Huanan Zhang, 2015. "Approximation Algorithms for Perishable Inventory Systems," Operations Research, INFORMS, vol. 63(3), pages 585-601, June.
    3. Liming Liu & Zhaotong Lian, 1999. "(s, S) Continuous Review Models for Products with Fixed Lifetimes," Operations Research, INFORMS, vol. 47(1), pages 150-158, February.
    4. van Donselaar, Karel H. & Broekmeulen, Rob A.C.M., 2012. "Approximations for the relative outdating of perishable products by combining stochastic modeling, simulation and regression modeling," International Journal of Production Economics, Elsevier, vol. 140(2), pages 660-669.
    5. Chiu, Huan Neng, 1995. "A heuristic (R, T) periodic review perishable inventory model with lead times," International Journal of Production Economics, Elsevier, vol. 42(1), pages 1-15, November.
    6. Xiuli Chao & Xiting Gong & Cong Shi & Chaolin Yang & Huanan Zhang & Sean X. Zhou, 2018. "Approximation Algorithms for Capacitated Perishable Inventory Systems with Positive Lead Times," Management Science, INFORMS, vol. 64(11), pages 5038-5061, November.
    7. Kouki, Chaaben & Sahin, Evren & Jemaï, Zied & Dallery, Yves, 2013. "Assessing the impact of perishability and the use of time temperature technologies on inventory management," International Journal of Production Economics, Elsevier, vol. 143(1), pages 72-85.
    8. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    9. William L. Cooper, 2001. "Pathwise Properties and Performance Bounds for a Perishable Inventory System," Operations Research, INFORMS, vol. 49(3), pages 455-466, June.
    10. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.
    11. Wang, Ke-Ming & Ma, Zu-Jun, 2015. "Age-based policy for blood transshipment during blood shortage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 166-183.
    12. Duan, Qinglin & Liao, T. Warren, 2013. "A new age-based replenishment policy for supply chain inventory optimization of highly perishable products," International Journal of Production Economics, Elsevier, vol. 145(2), pages 658-671.
    13. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    14. Jinzhi Bu & Xiting Gong & Xiuli Chao, 2023. "Asymptotic Optimality of Base-Stock Policies for Perishable Inventory Systems," Management Science, INFORMS, vol. 69(2), pages 846-864, February.
    15. Chiu, Huan Neng, 1995. "An approximation to the continuous review inventory model with perishable items and lead times," European Journal of Operational Research, Elsevier, vol. 87(1), pages 93-108, November.
    16. Xiong‐zhi Wang & Guo‐qing Wang, 2019. "Integrating dynamic pricing and inventory control for fresh‐agri product under consumer choice," Australian Economic Papers, Wiley Blackwell, vol. 58(1), pages 96-111, March.
    17. Z Shen & M Dessouky & F Ordonez, 2011. "Perishable inventory management system with a minimum volume constraint," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2063-2082, December.
    18. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    19. Hwang, Hark & Hahn, Kyu Hun, 2000. "An optimal procurement policy for items with an inventory level-dependent demand rate and fixed lifetime," European Journal of Operational Research, Elsevier, vol. 127(3), pages 537-545, December.
    20. Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Simple Policies with Provable Bounds for Managing Perishable Inventory," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2637-2650, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:121:y:2009:i:1:p:176-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.