IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v120y2009i2p287-300.html
   My bibliography  Save this article

Ant colony optimization for the single model U-type assembly line balancing problem

Author

Listed:
  • Sabuncuoglu, Ihsan
  • Erel, Erdal
  • Alp, Arda

Abstract

An assembly line is a production line in which units move continuously through a sequence of stations. The assembly line balancing problem is defined as the allocation of tasks to an ordered sequence of stations subject to precedence constraints with the objective of optimizing a performance measure. In this paper, we propose ant colony algorithms to solve the single-model U-type assembly line balancing problem. We conduct an extensive experimental study in which the performance of the proposed algorithm is compared against best known algorithms reported in the literature. The results indicate that the proposed algorithms display very competitive performance against them.

Suggested Citation

  • Sabuncuoglu, Ihsan & Erel, Erdal & Alp, Arda, 2009. "Ant colony optimization for the single model U-type assembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 287-300, August.
  • Handle: RePEc:eee:proeco:v:120:y:2009:i:2:p:287-300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00006-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    2. Miltenburg, John, 1998. "Balancing U-lines in a multiple U-line facility," European Journal of Operational Research, Elsevier, vol. 109(1), pages 1-23, August.
    3. Nakade, Koichi & Ohno, Katsuhisa, 2003. "Separate and carousel type allocations of workers in a U-shaped production line," European Journal of Operational Research, Elsevier, vol. 145(2), pages 403-424, March.
    4. Nakade, Koichi & Ohno, Katsuhisa, 1999. "An optimal worker allocation problem for a U-shaped production line," International Journal of Production Economics, Elsevier, vol. 60(1), pages 353-358, April.
    5. F. Brian Talbot & James H. Patterson & William V. Gehrlein, 1986. "A Comparative Evaluation of Heuristic Line Balancing Techniques," Management Science, INFORMS, vol. 32(4), pages 430-454, April.
    6. Bautista, Joaquin & Pereira, Jordi, 2007. "Ant algorithms for a time and space constrained assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2016-2032, March.
    7. Urban, Timothy L. & Chiang, Wen-Chyuan, 2006. "An optimal piecewise-linear program for the U-line balancing problem with stochastic task times," European Journal of Operational Research, Elsevier, vol. 168(3), pages 771-782, February.
    8. Timothy L. Urban, 1998. "Note. Optimal Balancing of U-Shaped Assembly Lines," Management Science, INFORMS, vol. 44(5), pages 738-741, May.
    9. Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
    10. Chiang, Wen-Chyuan & Urban, Timothy L., 2006. "The stochastic U-line balancing problem: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1767-1781, December.
    11. G. J. Miltenburg & J. Wijngaard, 1994. "The U-line Line Balancing Problem," Management Science, INFORMS, vol. 40(10), pages 1378-1388, October.
    12. Thomas R. Hoffmann, 1992. "Eureka: A Hybrid System for Assembly Line Balancing," Management Science, INFORMS, vol. 38(1), pages 39-47, January.
    13. Scholl, Armin, 1995. "Data of assembly line balancing problems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 25075, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. T'kindt, Vincent & Monmarche, Nicolas & Tercinet, Fabrice & Laugt, Daniel, 2002. "An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 250-257, October.
    15. Lin, B.M.T. & Lu, C.Y. & Shyu, S.J. & Tsai, C.Y., 2008. "Development of new features of ant colony optimization for flowshop scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 742-755, April.
    16. Aase, Gerald R. & Olson, John R. & Schniederjans, Marc J., 2004. "U-shaped assembly line layouts and their impact on labor productivity: An experimental study," European Journal of Operational Research, Elsevier, vol. 156(3), pages 698-711, August.
    17. Hertz, Alain & Widmer, Marino, 2003. "Guidelines for the use of meta-heuristics in combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 151(2), pages 247-252, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delorme, Xavier & Dolgui, Alexandre & Kovalyov, Mikhail Y., 2012. "Combinatorial design of a minimum cost transfer line," Omega, Elsevier, vol. 40(1), pages 31-41, January.
    2. M. H. Alavidoost & M. H. Fazel Zarandi & Mosahar Tarimoradi & Yaser Nemati, 2017. "Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 313-336, February.
    3. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    4. Masood Fathi & María Jesús à lvarez & Victoria Rodríguez, 2016. "A new heuristic-based bi-objective simulated annealing method for U-shaped assembly line balancing," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 145-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:120:y:2009:i:2:p:287-300. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.