IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v669y2025ics0378437125002511.html
   My bibliography  Save this article

Quantum heat engine with near-zero irreversible work utilizing quantum skyrmion working substance

Author

Listed:
  • Vijayan, Vipin
  • Chotorlishvili, L.
  • Ernst, A.
  • Katsnelson, M.I.
  • Parkin, S.S.P.
  • Mishra, Sunil K.

Abstract

The primary obstacle in the field of quantum thermodynamics revolves around the development and practical implementation of quantum heat engines operating at the nanoscale. One of the key challenges associated with quantum working bodies is “quantum friction,” which refers to irreversible wasted work resulting from quantum inter-level transitions. Consequently, the construction of a reversible quantum cycle necessitates the utilization of adiabatic shortcuts. However, the experimental realization of such shortcuts for realistic quantum substances is exceedingly complex and often unattainable for realistic materials. In this study, we propose a quantum heat engine that capitalizes on the plasmonic skyrmion lattice. Through rigorous analysis, we demonstrate that the quantum skyrmion substance exhibits near-zero irreversible work owing to its topological protection. Consequently, our engine operates without the need for adiabatic shortcuts. We checked by numerical calculations and observed that when the system is in the quantum skyrmion phase, the propagated states differ from the initial states only by the geometrical and dynamical phases. The adiabatic evolution leads to near-zero transition matrix elements, consequently the system demonstrates near-zero irreversible entropy. By employing plasmonic mods and an electric field, we drive the quantum cycle. The fundamental building blocks for constructing the quantum working body are individual skyrmions within the plasmonic lattice. As a result, one can precisely control the output power of the engine and the thermodynamic work accomplished by manipulating the number of quantum skyrmions present.

Suggested Citation

  • Vijayan, Vipin & Chotorlishvili, L. & Ernst, A. & Katsnelson, M.I. & Parkin, S.S.P. & Mishra, Sunil K., 2025. "Quantum heat engine with near-zero irreversible work utilizing quantum skyrmion working substance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 669(C).
  • Handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002511
    DOI: 10.1016/j.physa.2025.130599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002511
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.