IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59899-5.html
   My bibliography  Save this article

Spin-torque skyrmion resonance in a frustrated magnet

Author

Listed:
  • Nirel Bernstein

    (The Hebrew University of Jerusalem)

  • Hang Li

    (Tiangong University
    Chinese Academy of Sciences)

  • Benjamin Assouline

    (The Hebrew University of Jerusalem)

  • Yong-Chang Lau

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Igor Rozhansky

    (The Hebrew University of Jerusalem
    University of Manchester)

  • Wenhong Wang

    (Tiangong University)

  • Amir Capua

    (The Hebrew University of Jerusalem)

Abstract

The frustrated Fe3Sn2 magnet is technologically attractive due to its extreme-temperature skyrmion stability, large topological Hall effect, and current-induced helicity switching attributed to a self-induced spin-torque. Here, we present a current-driven skyrmion resonance technique excited by self-induced spin-torque in Fe3Sn2. The dynamics are probed optically in a time-resolved measurement enabling us to distinguish between the excited modes. We find that only the breathing and rotational counterclockwise modes are excited, rather than the three modes typically observed in Dzyaloshinskii-Moriya interaction-dominated magnetic textures. When a DC current is passed through the crystal, the skyrmion resonance linewidth is modulated. Our micromagnetic simulations indicate that the linewidth broadening arises from an effective damping-like spin-orbit torque. Accordingly, we extract an effective spin Hall conductivity of $$\sim {{\bf{793}}}\,\pm {{\bf{176}}}\,\left({{\hslash }}/{{\boldsymbol{e}}}\right)\,{\left({{\bf{\Omega}}} \; {{\bf{cm}}}\right)}^{-{{\bf{1}}}}$$ ~ 793 ± 176 ℏ / e Ω cm − 1 . Complementary planar Hall measurements suggest a small yet finite contribution of the real-space spin texture in the electronic transport in addition to a primary $${{\boldsymbol{k}}}$$ k -space contribution. Our results bring new insights into the anisotropic nature of spin-torques in frustrated magnets and to the possibility of using the skyrmion resonance as a sensor for spin currents.

Suggested Citation

  • Nirel Bernstein & Hang Li & Benjamin Assouline & Yong-Chang Lau & Igor Rozhansky & Wenhong Wang & Amir Capua, 2025. "Spin-torque skyrmion resonance in a frustrated magnet," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59899-5
    DOI: 10.1038/s41467-025-59899-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59899-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59899-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. O. Leonov & M. Mostovoy, 2015. "Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    2. M. Raju & A. Yagil & Anjan Soumyanarayanan & Anthony K. C. Tan & A. Almoalem & Fusheng Ma & O. M. Auslaender & C. Panagopoulos, 2019. "The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Linda Ye & Mingu Kang & Junwei Liu & Felix von Cube & Christina R. Wicker & Takehito Suzuki & Chris Jozwiak & Aaron Bostwick & Eli Rotenberg & David C. Bell & Liang Fu & Riccardo Comin & Joseph G. Che, 2018. "Massive Dirac fermions in a ferromagnetic kagome metal," Nature, Nature, vol. 555(7698), pages 638-642, March.
    4. A. O. Leonov & M. Mostovoy, 2017. "Edge states and skyrmion dynamics in nanostripes of frustrated magnets," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Hu & Junzhang Ma & Yinxiang Li & Yuxiao Jiang & Dariusz Jakub Gawryluk & Tianchen Hu & Jérémie Teyssier & Volodymyr Multian & Zhouyi Yin & Shuxiang Xu & Soohyeon Shin & Igor Plokhikh & Xinloong H, 2024. "Phonon promoted charge density wave in topological kagome metal ScV6Sn6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Imara Lima Fernandes & Stefan Blügel & Samir Lounis, 2022. "Spin-orbit enabled all-electrical readout of chiral spin-textures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Hongrui Zhang & Yu-Tsun Shao & Xiang Chen & Binhua Zhang & Tianye Wang & Fanhao Meng & Kun Xu & Peter Meisenheimer & Xianzhe Chen & Xiaoxi Huang & Piush Behera & Sajid Husain & Tiancong Zhu & Hao Pan , 2024. "Spin disorder control of topological spin texture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Lei Chen & Fang Xie & Shouvik Sur & Haoyu Hu & Silke Paschen & Jennifer Cano & Qimiao Si, 2024. "Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Subhasis Samanta & Hwiwoo Park & Chanhyeon Lee & Sungmin Jeon & Hengbo Cui & Yong-Xin Yao & Jungseek Hwang & Kwang-Yong Choi & Heung-Sik Kim, 2024. "Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Zemin Pan & Wenqi Xiong & Jiaqi Dai & Hui Zhang & Yunhua Wang & Tao Jian & Xingxia Cui & Jinghao Deng & Xiaoyu Lin & Zhengbo Cheng & Yusong Bai & Chao Zhu & Da Huo & Geng Li & Min Feng & Jun He & Wei , 2025. "Ferromagnetism and correlated insulating states in monolayer Mo33Te56," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    9. Saizheng Cao & Chenchao Xu & Hiroshi Fukui & Taishun Manjo & Ying Dong & Ming Shi & Yang Liu & Chao Cao & Yu Song, 2023. "Competing charge-density wave instabilities in the kagome metal ScV6Sn6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Mason L. Klemm & Saif Siddique & Yuan-Chun Chang & Sijie Xu & Yaofeng Xie & Tanner Legvold & Mehrdad T. Kiani & Xiaokun Teng & Bin Gao & Feng Ye & Huibo Cao & Yiqing Hao & Wei Tian & Hubertus Luetkens, 2025. "Vacancy-induced suppression of charge density wave order and its impact on magnetic order in kagome antiferromagnet FeGe," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Jonas B. Profe & Dante M. Kennes, 2022. "TU $$^2$$ 2 FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-13, March.
    12. Y. Hayashi & Y. Okamura & N. Kanazawa & T. Yu & T. Koretsune & R. Arita & A. Tsukazaki & M. Ichikawa & M. Kawasaki & Y. Tokura & Y. Takahashi, 2021. "Magneto-optical spectroscopy on Weyl nodes for anomalous and topological Hall effects in chiral MnGe," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. Sen Zhou & Ziqiang Wang, 2022. "Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. D. Subires & A. Korshunov & A. H. Said & L. Sánchez & Brenden R. Ortiz & Stephen D. Wilson & A. Bosak & S. Blanco-Canosa, 2023. "Order-disorder charge density wave instability in the kagome metal (Cs,Rb)V3Sb5," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Hao Zhang & Zhentao Wang & David Dahlbom & Kipton Barros & Cristian D. Batista, 2023. "CP2 skyrmions and skyrmion crystals in realistic quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Kohei Fujiwara & Yasuyuki Kato & Hitoshi Abe & Shun Noguchi & Junichi Shiogai & Yasuhiro Niwa & Hiroshi Kumigashira & Yukitoshi Motome & Atsushi Tsukazaki, 2023. "Berry curvature contributions of kagome-lattice fragments in amorphous Fe–Sn thin films," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Lebing Chen & Xiaokun Teng & Hengxin Tan & Barry L. Winn & Garrett E. Granroth & Feng Ye & D. H. Yu & R. A. Mole & Bin Gao & Binghai Yan & Ming Yi & Pengcheng Dai, 2024. "Competing itinerant and local spin interactions in kagome metal FeGe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Hengrui Gui & Lin Yang & Xiaoyu Wang & Dong Chen & Zekai Shi & Jiawen Zhang & Jia Wei & Keyi Zhou & Walter Schnelle & Yongjun Zhang & Yu Liu & Alimamy F. Bangura & Ziqiang Wang & Claudia Felser & Huiq, 2025. "Probing orbital magnetism of a kagome metal CsV3Sb5 by a tuning fork resonator," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    20. Benjamin Lowe & Bernard Field & Jack Hellerstedt & Julian Ceddia & Henry L. Nourse & Ben J. Powell & Nikhil V. Medhekar & Agustin Schiffrin, 2024. "Local gate control of Mott metal-insulator transition in a 2D metal-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59899-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.