IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29237-0.html
   My bibliography  Save this article

Spin-orbit enabled all-electrical readout of chiral spin-textures

Author

Listed:
  • Imara Lima Fernandes

    (Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA)

  • Stefan Blügel

    (Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA)

  • Samir Lounis

    (Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA
    Faculty of Physics, University of Duisburg-Essen and CENIDE)

Abstract

Chirality and topology are intimately related fundamental concepts, which are heavily explored to establish spin-textures as potential magnetic bits in information technology. However, this ambition is inhibited since the electrical reading of chiral attributes is highly non-trivial with conventional current perpendicular-to-plane (CPP) sensing devices. Here we demonstrate from extensive first-principles simulations and multiple scattering expansion the emergence of the chiral spin-mixing magnetoresistance (C-XMR) enabling highly efficient all-electrical readout of the chirality and helicity of respectively one- and two-dimensional magnetic states of matter. It is linear with spin-orbit coupling in contrast to the quadratic dependence associated with the unveiled non-local spin-mixing anisotropic MR (X-AMR). Such transport effects are systematized on various non-collinear magnetic states – spin-spirals and skyrmions – and compared to the uncovered spin-orbit-independent multi-site magnetoresistances. Owing to their simple implementation in readily available reading devices, the proposed magnetoresistances offer exciting and decisive ingredients to explore with all-electrical means the rich physics of topological and chiral magnetic objects.

Suggested Citation

  • Imara Lima Fernandes & Stefan Blügel & Samir Lounis, 2022. "Spin-orbit enabled all-electrical readout of chiral spin-textures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29237-0
    DOI: 10.1038/s41467-022-29237-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29237-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29237-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jagannath Jena & Börge Göbel & Tianping Ma & Vivek Kumar & Rana Saha & Ingrid Mertig & Claudia Felser & Stuart S. P. Parkin, 2020. "Elliptical Bloch skyrmion chiral twins in an antiskyrmion system," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. U. K. Rößler & A. N. Bogdanov & C. Pfleiderer, 2006. "Spontaneous skyrmion ground states in magnetic metals," Nature, Nature, vol. 442(7104), pages 797-801, August.
    3. Shang Gao & H. Diego Rosales & Flavia A. Gómez Albarracín & Vladimir Tsurkan & Guratinder Kaur & Tom Fennell & Paul Steffens & Martin Boehm & Petr Čermák & Astrid Schneidewind & Eric Ressouche & Danie, 2020. "Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings," Nature, Nature, vol. 586(7827), pages 37-41, October.
    4. Imara Lima Fernandes & Mohammed Bouhassoune & Samir Lounis, 2020. "Defect-implantation for the all-electrical detection of non-collinear spin-textures," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. A. O. Leonov & M. Mostovoy, 2015. "Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    6. Manuel dos Santos Dias & Juba Bouaziz & Mohammed Bouhassoune & Stefan Blügel & Samir Lounis, 2016. "Chirality-driven orbital magnetic moments as a new probe for topological magnetic structures," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    7. Wataru Koshibae & Naoto Nagaosa, 2014. "Creation of skyrmions and antiskyrmions by local heating," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amal Aldarawsheh & Imara Lima Fernandes & Sascha Brinker & Moritz Sallermann & Muayad Abusaa & Stefan Blügel & Samir Lounis, 2022. "Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jagannath Jena & Börge Göbel & Tomoki Hirosawa & Sebastián A. Díaz & Daniel Wolf & Taichi Hinokihara & Vivek Kumar & Ingrid Mertig & Claudia Felser & Axel Lubk & Daniel Loss & Stuart S. P. Parkin, 2022. "Observation of fractional spin textures in a Heusler material," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Roméo Juge & Naveen Sisodia & Joseba Urrestarazu Larrañaga & Qiang Zhang & Van Tuong Pham & Kumari Gaurav Rana & Brice Sarpi & Nicolas Mille & Stefan Stanescu & Rachid Belkhou & Mohamad-Assaad Mawass , 2022. "Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Hao Zhang & Zhentao Wang & David Dahlbom & Kipton Barros & Cristian D. Batista, 2023. "CP2 skyrmions and skyrmion crystals in realistic quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Silva, Joeliton B. & de Albuquerque, Douglas F., 2022. "Tricritical behavior of the spin-3/2 anisotropic Heisenberg model with Dzyaloshinskii–Moriya interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    10. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Wang, Bao & Lu, Xiao-Hu & Jia, Xiao & Xiong, Hao, 2023. "Coherent stimulated amplification of the skyrmion breathing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    12. Mara Gutzeit & André Kubetzka & Soumyajyoti Haldar & Henning Pralow & Moritz A. Goerzen & Roland Wiesendanger & Stefan Heinze & Kirsten Bergmann, 2022. "Nano-scale collinear multi-Q states driven by higher-order interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Jidan Yang & Yu Zou & Wentao Tang & Jinxing Li & Mingjun Huang & Satoshi Aya, 2022. "Spontaneous electric-polarization topology in confined ferroelectric nematics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Frederic Rendell-Bhatti & Raymond J. Lamb & Johannes W. Jagt & Gary W. Paterson & Henk J. M. Swagten & Damien McGrouther, 2020. "Spontaneous creation and annihilation dynamics and strain-limited stability of magnetic skyrmions," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    16. M. T. Birch & D. Cortés-Ortuño & K. Litzius & S. Wintz & F. Schulz & M. Weigand & A. Štefančič & D. A. Mayoh & G. Balakrishnan & P. D. Hatton & G. Schütz, 2022. "Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29237-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.