IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v661y2025ics0378437125000445.html
   My bibliography  Save this article

Finite-time performance of quantum Otto refrigerators driven by a squeezed reservoir

Author

Listed:
  • Liu, Dehua
  • Xiao, Yang
  • He, Xian
  • He, Jizhou
  • Wang, Jianhui

Abstract

We consider a finite-time quantum Otto refrigerator that consists of two isochoric (thermal-contact) processes, where the working substance is alternatively coupled to a cold squeezed reservoir and a hot thermal reservoir, and two unitary driven strokes, where the working substance is isolated from these two reservoirs and its von Neumann entropy is kept constant. Both quantum inner friction and coherence are generated along the finite-time driven strokes, and coherence cannot be fully erased along an isochoric stroke. We demonstrate that, either in presence or in absence of reservoir squeezing, speeding up the machine may lead to an increase in both average cooling rate and thermodynamic coefficient of performance, with no sacrifice of machine stability. Our results also show that reservoir squeezing significantly enhances the performance by improving both the coefficient of performance and the cooling rate, and it enables higher stability by damping the fluctuations of cooling rate and coefficient of performance.

Suggested Citation

  • Liu, Dehua & Xiao, Yang & He, Xian & He, Jizhou & Wang, Jianhui, 2025. "Finite-time performance of quantum Otto refrigerators driven by a squeezed reservoir," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
  • Handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000445
    DOI: 10.1016/j.physa.2025.130392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000445
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Ashutosh & Lahiri, Sourabh & Bagarti, Trilochan & Banerjee, Subhashish, 2023. "Thermodynamics of one and two-qubit nonequilibrium heat engines running between squeezed thermal reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    2. Sarmah, Manash Jyoti & Bansal, Akanksha & Goswami, Himangshu Prabal, 2023. "Nonequilibrium fluctuations in boson transport through squeezed reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. Zhang, Yanchao, 2020. "Optimization performance of quantum Otto heat engines and refrigerators with squeezed thermal reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Kaur, Kirandeep & Singh, Varinder & Ghai, Jatin & Jena, Satyajit & Müstecaplıoğlu, Özgür E., 2021. "Unified trade-off optimization of a three-level quantum refrigerator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).
    5. Matteo Lostaglio & David Jennings & Terry Rudolph, 2015. "Description of quantum coherence in thermodynamic processes requires constraints beyond free energy," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    6. Gatien Verley & Massimiliano Esposito & Tim Willaert & Christian Van den Broeck, 2014. "The unlikely Carnot efficiency," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
    7. Chen, Lingen & Liu, Xiaowei & Ge, Yanlin & Wu, Feng & Feng, Huijun & Xia, Shaojun, 2020. "Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Ablimit, Arapat & Ren, Feng-Hua & He, Run-Hong & Xie, Yang-Yang & Wang, Zhao-Ming, 2023. "Effects of non-Markovian squeezed bath on the dynamics of open systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Quentin Bouton & Jens Nettersheim & Sabrina Burgardt & Daniel Adam & Eric Lutz & Artur Widera, 2021. "A quantum heat engine driven by atomic collisions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yong & Fang, Xinting & Chen, Lingen & Ge, Yanlin, 2025. "Optimal performance of irreversible quantum Stirling refrigerator with extreme relativistic particles as working substance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yong & Fang, Xinting & Chen, Lingen & Ge, Yanlin, 2025. "Optimal performance of irreversible quantum Stirling refrigerator with extreme relativistic particles as working substance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    2. Kumar, Ashutosh & Lahiri, Sourabh & Bagarti, Trilochan & Banerjee, Subhashish, 2023. "Thermodynamics of one and two-qubit nonequilibrium heat engines running between squeezed thermal reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    3. Sarmah, Manash Jyoti & Goswami, Himangshu Prabal, 2023. "Learning coherences from nonequilibrium fluctuations in a quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    4. Ares de Parga-Regalado, A.M. & Ramírez-Moreno, M.A., 2022. "On the analysis of an ecological regime for energy converters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2023. "Three-heat-reservoir thermal Brownian heat transformer and its performance limits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    6. Kumari, Aradhana & Samsuzzaman, Md. & Saha, Arnab & Lahiri, Sourabh, 2024. "Stochastic heat engine using multiple interacting active particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    7. Ares de Parga-Regalado, A.M. & Valencia-Ortega, G. & Barranco-Jiménez, M.A., 2023. "Thermo-economic optimization of irreversible Novikov power plant models including a proposal of dissipation cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    8. Lingen Chen & Chenqi Tang & Huijun Feng & Yanlin Ge, 2020. "Power, Efficiency, Power Density and Ecological Function Optimization for an Irreversible Modified Closed Variable-Temperature Reservoir Regenerative Brayton Cycle with One Isothermal Heating Process," Energies, MDPI, vol. 13(19), pages 1-23, October.
    9. Cao, Haibo & Li, Zhexu & Peng, Wanli & Yang, Hanxin & Guo, Juncheng, 2023. "Optimal analyses and performance bounds of the low-dissipation three-terminal heat transformer: The roles of the parameter constraints and optimization criteria," Energy, Elsevier, vol. 277(C).
    10. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    11. Villegas, Vladimir P. & Villagonzalo, Cristine D., 2022. "Refrigeration using magnetocaloric and electrocaloric effects in a Fermi–Hubbard optical dimer exposed to a heat bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    12. Ares de Parga-Regalado, A.M. & Ramírez-Moreno, M.A. & Angulo-Brown, F., 2023. "A comparative thermodynamic and thermoeconomic analysis between two ecological regimes for the Novikov energy converter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    13. O. Onishchenko & G. Guarnieri & P. Rosillo-Rodes & D. Pijn & J. Hilder & U. G. Poschinger & M. Perarnau-Llobet & J. Eisert & F. Schmidt-Kaler, 2024. "Probing coherent quantum thermodynamics using a trapped ion," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    14. Valencia-Ortega, G. & Levario-Medina, S. & Barranco-Jiménez, M.A., 2021. "Local and global stability analysis of a Curzon–Ahlborn model applied to power plants working at maximum k-efficient power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    15. Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2024. "Equivalent combined cycle modeling and performance optimization for a three-heat-reservoir thermal Brownian heat transformer with external heat-transfer," Energy, Elsevier, vol. 313(C).
    16. Uttam Singh & Arun Kumar Pati & Manabendra Nath Bera, 2016. "Uncertainty Relations for Quantum Coherence," Mathematics, MDPI, vol. 4(3), pages 1-12, July.
    17. Berrada, K. & Raffah, Bahaaudin & Eleuch, H., 2021. "Long-time protection of correlations and coherence in squeezed thermal bath," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Liu, Ze-Yu & Xia, Yun-Jie & Man, Zhong-Xiao, 2025. "Entropy production of a quantum system in non-equilibrium environment: The effect of coherence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    19. Guerrero, Alejandra I., 2025. "The quantum J1−J2 Blume–Capel model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.