IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v665y2025ics0378437125001517.html
   My bibliography  Save this article

Deterministic risk modelling: Newtonian dynamics in capital flow

Author

Listed:
  • Szczypińska, Anna
  • Piotrowski, Edward W.
  • Makowski, Marcin

Abstract

Risk is a universal concept that is applied in many scientific disciplines. We demonstrate the relationship between the risk associated with the dynamics of capital flows and a specific class of problems from classical mechanics, which rely solely on the deterministic nature of the constructed models. This approach differs from the currently dominant one, where risk is mainly associated with probabilistic methods of modelling Brownian motion. We point out the safest form of loan repayment while considering profit maximization. We derive formulas that allow us to calculate the value of capital at any discrete moments in time, given lower and upper interest rate bounds. We use matrix rates and Newton’s principles to analyse capital dynamics in both continuous and discrete systems. We illustrate the proposed theory with a practical example: a measure of the efficiency of buying and selling transactions.

Suggested Citation

  • Szczypińska, Anna & Piotrowski, Edward W. & Makowski, Marcin, 2025. "Deterministic risk modelling: Newtonian dynamics in capital flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
  • Handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001517
    DOI: 10.1016/j.physa.2025.130499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001517
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makowski, Marcin & Piotrowski, Edward W. & Sładkowski, Jan, 2019. "Schrödinger type equation for subjective identification of supply and demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 131-137.
    2. Zambrzycka, Anna & Piotrowski, Edward W., 2007. "The matrix rate of return," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 347-353.
    3. Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2010. "Subjective modelling of supply and demand—the minimum of Fisher information solution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4904-4912.
    4. Makowski, Marcin & Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2017. "Profit intensity and cases of non-compliance with the law of demand/supply," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 53-59.
    5. E. W. Piotrowski & M. Schroeder, 2007. "Kelly criterion revisited: optimal bets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 201-203, May.
    6. Piotrowski, E.W. & Sładkowski, J., 2003. "The merchandising mathematician model: profit intensities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(3), pages 496-504.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotrowski, Edward W. & Sładkowski, Jan, 2007. "Geometry of financial markets—Towards information theory model of markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 228-234.
    2. Edward W. Piotrowski & Jan Sladkowski & Anna Szczypinska, "undated". "Reinforcement Learning in Market Games," Departmental Working Papers 30, University of Bialtystok, Department of Theoretical Physics.
    3. Jankowski, Robert & Makowski, Marcin & Piotrowski, Edward W., 2014. "Parameter estimation by fixed point of function of information processing intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 558-563.
    4. Marcin Makowski & Edward W. Piotrowski & Jan S{l}adkowski & Jacek Syska, 2015. "The intensity of the random variable intercept in the sector of negative probabilities," Papers 1503.07495, arXiv.org.
    5. Makowski, Marcin & Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2017. "Profit intensity and cases of non-compliance with the law of demand/supply," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 53-59.
    6. Piotrowski, Edward W. & Sładkowski, Jan, 2005. "Quantum diffusion of prices and profits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 185-195.
    7. Bednarek, Ilona & Makowski, Marcin & Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2015. "Generalization of the Aoki–Yoshikawa sectoral productivity model based on extreme physical information principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 161-172.
    8. Piotrowski, Edward W. & Sładkowski, Jan, 2008. "Quantum auctions: Facts and myths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3949-3953.
    9. Szczypińska, Anna & Piotrowski, Edward W., 2008. "Projective market model approach to AHP decision making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3982-3986.
    10. Zambrzycka, Anna & Piotrowski, Edward W., 2007. "The matrix rate of return," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 347-353.
    11. Shi, Lian & Xu, Feng & Chen, Yongtai, 2021. "Quantum Cournot duopoly game with isoelastic demand function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    12. Dominic Cortis & Steve Hales & Frank Bezzina, 2013. "Profiting On Inefficiencies In Betting Derivative Markets: The Case Of Uefa Euro 2012," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 7(1), pages 39-51.
    13. Piotrowski, Edward W., 2003. "Fixed point theorem for simple quantum strategies in quantum market games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 196-200.
    14. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    15. Luo, Yong & Zhu, Bo & Tang, Yong, 2014. "Simulated annealing algorithm for optimal capital growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 10-18.
    16. Pakuła, Ireneusz & Piotrowski, Edward W. & Sładkowski, Jan, 2007. "Universality of measurements on quantum markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 397-405.
    17. Domino, Krzysztof, 2012. "The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 156-169.
    18. Marcin Makowski & Edward W. Piotrowski & Piotr Frk{a}ckiewicz & Marek Szopa, 2022. "Transactional Interpretation for the Principle of Minimum Fisher Information," Papers 2203.12607, arXiv.org.
    19. Edward W. Piotrowski & Jerzy Luczka, "undated". "The relativistic velocity addition law optimizes a forecast gambler's profit," Departmental Working Papers 31, University of Bialtystok, Department of Theoretical Physics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.