IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v661y2025ics0378437125000457.html
   My bibliography  Save this article

How left-turning vehicles deal with conflicts at intersections: A driving behavior model based on relative motion risk quantification

Author

Listed:
  • Hua, Jun
  • Li, Bin
  • Wang, Lin
  • Lu, Guangquan

Abstract

Unprotected left turns at intersections in right-hand traffic are a critical factor affecting traffic safety. Traditional risk assessment indicators, which typically rely on vehicle relative positions, fall short in supporting yield/go decisions by left-turning drivers across different types of conflicts, and the corresponding driving behavior models struggle to capture the underlying behavioral mechanisms. To address these limitations, this paper introduces an improved risk assessment indicator based on risk field theory. By quantifying the relative motion risk between interactive vehicles, the proposed indicator offers a unified standard for intuitively determining whether a conflict has been resolved. Building on this, a Perception-decision-action behavioral framework, grounded in the preview-follower theory and risk homeostasis theory, is employed to model decision-making behaviors. This behavioral mechanism-driven model is validated through numerical simulations of vehicle trajectories, achieving a 92.59 % accuracy rate in replicating the decision-making behavior of left-turning vehicles, comparable to the performance of previous data-driven classification models. Furthermore, several cases are analyzed and discussed under different risk preferences and preview times, demonstrating that the model has potential for personalized trajectory planning. Overall, this paper provides a valuable reference model for enhancing intersection safety and advancing trajectory planning in autonomous driving systems.

Suggested Citation

  • Hua, Jun & Li, Bin & Wang, Lin & Lu, Guangquan, 2025. "How left-turning vehicles deal with conflicts at intersections: A driving behavior model based on relative motion risk quantification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
  • Handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000457
    DOI: 10.1016/j.physa.2025.130393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000457
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Guangquan Lu & Bo Cheng & Yunpeng Wang & Qingfeng Lin, 2013. "A Car-Following Model Based on Quantified Homeostatic Risk Perception," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, November.
    2. Jiao, Shuaiyang & Zhang, Shengrui & Zhou, Bei & Zhang, Lei & Xue, Liyuan, 2021. "Dynamic performance and safety analysis of car-following models considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    3. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    4. Ma, Yanli & Dong, Fangqi & Yin, Biqing & Lou, Yining, 2023. "Real-time risk assessment model for multi-vehicle interaction of connected and autonomous vehicles in weaving area based on risk potential field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
    5. Jianyong Cao & Hui Lu & Konghui Guo & Jianwen Zhang, 2013. "A Driver Modeling Based on the Preview-Follower Theory and the Jerky Dynamics," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Guodong & Sun, Baofeng & Yuan, Quan & Yang, Wenyu, 2025. "The connected vehicle microscopic behavior modeling base on risk field theory: Theoretical developments, methodological overview and future trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 668(C).
    2. Zhufei Huang & Zihan Zhang & Haijian Li & Lingqiao Qin & Jian Rong, 2019. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    3. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    4. Blanch Micó, Mª Teresa & Lucas Alba, Antonio & Bellés Rivera, Teresa & Ferruz Gracia, Ana Mª & Melchor Galán, Óscar M. & Delgado Pastor, Luis C. & Ruíz Jiménez, Francisco & Chóliz Montañés, Mariano, 2018. "Car following: Comparing distance-oriented vs. inertia-oriented driving techniques," Transport Policy, Elsevier, vol. 67(C), pages 13-22.
    5. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    6. Wu, Zhibei & Sun, Jitao & Xu, Ruihua, 2021. "Consensus-based connected vehicles platoon control via impulsive control method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    9. Li Li & Dong Zhang, 2018. "Merging Vehicles and Lane Speed-Flow Relationship in a Work Zone," Sustainability, MDPI, vol. 10(7), pages 1-13, June.
    10. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish, 2019. "Is more always better? The impact of vehicular trajectory completeness on car-following model calibration and validation," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 49-75.
    11. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    12. Chen, Kehua & Zhu, Meixin & Sun, Lijun & Yang, Hai, 2024. "Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    13. Ma, Yanli & Lv, Zhiliang & Zhang, Peng & Chan, Ching-Yao, 2021. "Impact of lane changing on adjacent vehicles considering multi-vehicle interaction in mixed traffic flow: A velocity estimating model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Ouyang, Pengying & Liu, Pan & Guo, Yanyong & Chen, Kequan, 2023. "Effects of configuration elements and traffic flow conditions on Lane-Changing rates at the weaving segments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    15. Li, Zhen-Hua & Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhu, Kai-Xuan & Di Pace, Roberta, 2022. "Empirical and simulation study on traffic oscillation characteristic using floating car data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    16. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    17. Khelfa, Basma & Ba, Ibrahima & Tordeux, Antoine, 2023. "Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    18. Gong, Siyuan & Du, Lili, 2016. "Optimal location of advance warning for mandatory lane change near a two-lane highway off-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 1-30.
    19. Jiang, Yangsheng & Tan, Li & Xiao, Guosheng & Wu, Yunxia & Yao, Zhihong, 2024. "Platoon-aware cooperative lane-changing strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    20. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.