IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437124000967.html
   My bibliography  Save this article

Variable time headway spacing strategy for connected vehicles platoon based on sliding mode control

Author

Listed:
  • Zhuang, Xinfa
  • Zhang, Jing
  • Tian, Junfang
  • Cui, Fengying
  • Wang, Tao

Abstract

In complex traffic environments, the preceding vehicle in the platoon often experiences frequent acceleration and deceleration due to changing traffic conditions, resulting in fluctuations in the velocity of the following vehicles. While the current spacing strategy can help the platoon regain a stable state during the fluctuation of vehicle flow, it does not effectively suppress the velocity and acceleration fluctuations of the following vehicles during the adjustment process. This paper proposes a novel variable time headway (VTH) spacing strategy, which employs the neighboring vehicle velocity ratio to depict the relative variations in velocity and considers the impact of the preceding vehicle’s acceleration. As a result, the fluctuations of the preceding vehicle can be precisely characterized allowing the following vehicles to respond promptly and accurately to the changes in the behavior of the preceding vehicle. Simultaneously, a robust low communication dependency (RLCD) system based on the third-order dynamic model is proposed to mitigate the impact of complexity and reliability of information flow topology (IFT) on platoon stability in the Vehicular Ad hoc NETwork (VANET). Based on the proposed VTH strategy, a robust coupled sliding mode controller for the platoon is designed under the low communication dependency requirement. Furthermore, by introducing dynamic sliding mode control into the coupled sliding mode surface, a smoother controller input is obtained while ensuring the string stability of the vehicle platoon. The numerical simulation results demonstrate conclusively that the proposed strategy effectively reduces velocity tracking errors and acceleration fluctuations for connected vehicles (CVs) in complex traffic environments. The fluctuations of the preceding vehicles can be more effectively absorbed, and the overall tracking performance of the vehicle platoon is enhanced.

Suggested Citation

  • Zhuang, Xinfa & Zhang, Jing & Tian, Junfang & Cui, Fengying & Wang, Tao, 2024. "Variable time headway spacing strategy for connected vehicles platoon based on sliding mode control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000967
    DOI: 10.1016/j.physa.2024.129588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000967
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.