IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437124000748.html
   My bibliography  Save this article

Variable-length traffic state prediction and applications for urban network with adaptive signal timing plan

Author

Listed:
  • Huang, Hai-chao
  • He, Hong-di
  • Zhang, Zhe
  • Ma, Qing-hai
  • Xue, Xing-kuo
  • Zhang, Wen-xiu

Abstract

In urban road networks, traffic states are characterized with complicated signal intervention and results in variable-length traffic states, especially under the adaptive signal timing condition. Due to the limitations in available real-world data and technological limitations, there have been limited investigations regarding the prediction of traffic states in road networks under adaptive signal timing. The purpose of this study is to provide a prediction method for variable-length traffic states and discuss the practical application of predictions within intelligent transportation systems. This study proposes an indicator called Phase flow Rate (PR) that integrates traffic states with signal timing information. We further introduce warping algorithm align the variable-length PR into shapes that can be accepted by the model. Finally, we propose an embedded attention spatio-temporal graph convolutional neural network (EASTGCN) for predicting PR in urban traffic systems. Base on two months of data from an urban network with an adaptive signal timing plan, experimental results demonstrate that our approach effectively addresses the challenge of variable-length data due to irregular sampling. Moreover, EASTGCN outperforms state-of-the-art models, showing an improvement in prediction performance ranging from 10.6% to 21.2%. Predicting PR rather than conventional traffic states offers distinct advantages in three application scenarios, including a 6.6% improvement in energy efficiency through speed inducement of electric vehicles, 16% travel time savings for route planning of connected vehicles, and real-time optimization for traffic congestion management.

Suggested Citation

  • Huang, Hai-chao & He, Hong-di & Zhang, Zhe & Ma, Qing-hai & Xue, Xing-kuo & Zhang, Wen-xiu, 2024. "Variable-length traffic state prediction and applications for urban network with adaptive signal timing plan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000748
    DOI: 10.1016/j.physa.2024.129566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000748
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.