IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v565y2021ics0378437120308645.html
   My bibliography  Save this article

The effect of passenger attributes on alighting and boarding efficiency based on social force model

Author

Listed:
  • Yang, Xiaoxia
  • Yang, Xiaoli
  • Pan, Fuquan
  • Kang, Yuanlei
  • Zhang, Jihui

Abstract

This paper mainly focuses on the study of the effect of passenger attribute namely the homogeneity and heterogeneity in passengers on the alighting and boarding efficiency (A&Be) in the subway stations. The frequently used design scheme of single alighting area and double waiting areas is chosen as the research scenario in this paper. The social force model is adopted as a fundamental driven equation of passengers’ movements. Different cases through changing the parameters including the desired speed, the relaxation time and the body radius which could represent the homogeneity and heterogeneity in passengers are set up. Simulation results indicate that the change of values of total traffic time and deadlock probability caused by the homogeneous body radius, relaxation time and desired speed is greater than that caused by the corresponding heterogeneous parameters. When passengers follow the civilized rules of alighting first, the homogeneous low desired speed, long relaxation time and large body radius will be adverse to the travel efficiency and could delay the start time of deadlock. The large heterogeneity of desired speed can make passengers’ motions unstable more easily. More passengers with high desired speed, short relaxation time and small body radius could facilitate the traffic. Moreover, the A&Be is more pronounced to the homogeneous body radius compared to different degrees of the homogeneous or heterogeneous desired speed and relaxation time. This investigation could offer theoretical support for passenger flow management in different time periods and improve the level of service in the subway station.

Suggested Citation

  • Yang, Xiaoxia & Yang, Xiaoli & Pan, Fuquan & Kang, Yuanlei & Zhang, Jihui, 2021. "The effect of passenger attributes on alighting and boarding efficiency based on social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  • Handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308645
    DOI: 10.1016/j.physa.2020.125566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308645
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Tajima, Yusuke & Takimoto, Kouhei & Nagatani, Takashi, 2002. "Pattern formation and jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 709-723.
    3. Yongxing Li & Hongfei Jia & Ya-Nan Zhou & Lili Yang, 2017. "Simulation research on pedestrian counter flow subconscious behavior," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(02), pages 1-11, February.
    4. Qu, Yunchao & Xiao, Yao & Liu, Hao & Yin, Haodong & Wu, Jianjun & Qu, Qiushi & Li, Daqing & Tang, Tao, 2019. "Analyzing crowd dynamic characteristics of boarding and alighting process in urban metro stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Zhang, Dawei & Zhu, Haitao & Hostikka, Simo & Qiu, Shi, 2019. "Pedestrian dynamics in a heterogeneous bidirectional flow: Overtaking behaviour and lane formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 72-84.
    6. Tang, Ming & Jia, Hongfei & Ran, Bin & Li, Jun, 2016. "Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 242-258.
    7. Yang, Xiaoxia & Yang, Xiaoli & Wang, Qianling & Kang, Yuanlei & Pan, Fuquan, 2020. "Guide optimization in pedestrian emergency evacuation," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    8. Yang, Xiaoxia & Yang, Xiaoli & Xue, Shuqi & Zhang, Jihui & Pan, Fuquan & Kang, Yuanlei & Wang, Qianling, 2019. "The effect of waiting area design at the metro platform on passengers’ alighting and boarding behaviors," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 177-193.
    9. Fukamachi, Masahiro & Nagatani, Takashi, 2007. "Sidle effect on pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 269-278.
    10. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    11. Li, Xingli & Geng, Zhongfei & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of dangerous source on evacuation dynamics in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Jinlong & Kong, Lingkang & Li, Hui-Jia, 2023. "An effective edge-adding strategy for enhancing network traffic capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Gao, Fengqiang & Yan, Yuyue & Chen, Zhihao & Zheng, Linxiao & Ren, Huan, 2022. "Effect of density control in partially observable asymmetric-exit evacuation under guidance: Strategic suggestion under time delay," Applied Mathematics and Computation, Elsevier, vol. 418(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Jun & Qin, Zheng & Hu, Hao & Xu, Zhaohui & Li, Huan, 2012. "The fundamental diagram of pedestrian model with slow reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6112-6120.
    2. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    4. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    5. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    6. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    7. Jin, Cheng-Jie & Jiang, Rui & Yin, Jun-Lin & Dong, Li-Yun & Li, Dawei, 2017. "Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 666-681.
    8. Fu, Libi & Liu, Yuxing & Shi, Yongqian & Zhao, Yongxiang, 2021. "Dynamics of bidirectional pedestrian flow in a corridor including individuals with disabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    10. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    11. Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning, 2021. "Phase behaviors of counterflowing stream of pedestrians with site-exchange in local vision and environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    12. Zhang, Qi, 2015. "Simulation model of bi-directional pedestrian considering potential effect ahead and behind," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 335-348.
    13. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    14. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    15. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    16. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    17. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    18. Yanyan Niu & Jia Yu & Dawei Lu & Renwu Mu & Jiahong Wen, 2022. "Spatial Allocation Method of Evacuation Guiders in Urban Open Public Spaces: A Case Study of Binjiang Green Space in Xuhui District, Shanghai, China," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    19. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.