IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119320394.html
   My bibliography  Save this article

Earthquake clusters identification through a Markovian Arrival Process (MAP): Application in Corinth Gulf (Greece)

Author

Listed:
  • Bountzis, P.
  • Papadimitriou, E.
  • Tsaklidis, G.

Abstract

Prevailing patterns of seismicity dynamics, like the evolution of main shock–aftershock sequences and swarms, along with periods of seismic quiescence, are explored through the temporal analysis of the earthquake clustering in the area of Corinth Gulf, Greece. The clusters are unveiled by the implementation of a new algorithm, whose robustness is verified on simulated catalogs. The method is based on the application of a bivariate stochastic point process, the Markovian arrival process (MAP), (Nt,Jt)t∈R+, whose intensity function, λt, is driven by the underlying Markov process, Jt. In particular, each hidden state corresponds to a distinct occurrence rate of the counting process, Nt, that enables the modeling of changes in the earthquake dynamics. With the proposed algorithm, known as local decoding algorithm, the hidden states, i.e. seismicity rates, are revealed at each occurrence time.

Suggested Citation

  • Bountzis, P. & Papadimitriou, E. & Tsaklidis, G., 2020. "Earthquake clusters identification through a Markovian Arrival Process (MAP): Application in Corinth Gulf (Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320394
    DOI: 10.1016/j.physa.2019.123655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119320394
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vassilios Karakostas & Eleni Karagianni & Parthena Paradisopoulou, 2012. "Space–time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth Gulf," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1181-1202, September.
    2. P. Bountzis & E. Papadimitriou & G. Tsaklidis, 2019. "Estimating the earthquake occurrence rates in Corinth Gulf (Greece) through Markovian arrival process modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(6), pages 995-1020, April.
    3. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    4. Ting Wang & Mark Bebbington & David Harte, 2012. "Markov-modulated Hawkes process with stepwise decay," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 521-544, June.
    5. Marcel F. Neuts, 1978. "Renewal processes of phase type," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(3), pages 445-454, September.
    6. C. E. Pertsinidou & G. Tsaklidis & E. Papadimitriou & N. Limnios, 2017. "Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1064-1085, April.
    7. Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
    8. Shaochuan Lu, 2017. "A continuous-time HMM approach to modeling the magnitude-frequency distribution of earthquakes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 71-88, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bountzis, P. & Tsaklidis, G. & Papadimitriou, E., 2022. "Pseudo-prospective forecasting of large earthquakes full distribution in circum-Pacific belt incorporating non-stationary modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danisman, Ozgur & Uzunoglu Kocer, Umay, 2021. "Hidden Markov models with binary dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    2. Amina Shahzadi & Ting Wang & Mark Bebbington & Matthew Parry, 2023. "Inhomogeneous hidden semi-Markov models for incompletely observed point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 253-280, April.
    3. Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
    4. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. L. G. Afanaseva & S. A. Grishunina, 2020. "Stability conditions for a multiserver queueing system with a regenerative input flow and simultaneous service of a customer by a random number of servers," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 213-241, April.
    6. C. E. Pertsinidou & G. Tsaklidis & E. Papadimitriou & N. Limnios, 2017. "Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1064-1085, April.
    7. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    8. Gámiz, María Luz & Limnios, Nikolaos & Segovia-García, María del Carmen, 2023. "Hidden markov models in reliability and maintenance," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1242-1255.
    9. Edward P. C. Kao & Marion Spokony Smith, 1992. "On excess‐, current‐, and total‐life distributions of phase‐type renewal processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(6), pages 789-799, October.
    10. Lykou, R. & Tsaklidis, G. & Papadimitriou, E., 2020. "Change point analysis on the Corinth Gulf (Greece) seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    12. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    13. Guglielmo D’Amico & Ada Lika & Filippo Petroni, 2019. "Change point dynamics for financial data: an indexed Markov chain approach," Annals of Finance, Springer, vol. 15(2), pages 247-266, June.
    14. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Jan 2024.
    15. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Jian & Wang, Zhen, 2019. "Passive state estimation for fuzzy jumping neural networks with fading channels based on the hidden Markov model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Chorozoglou, D. & Kugiumtzis, D. & Papadimitriou, E., 2018. "Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 28-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.