IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i1p71-88.html
   My bibliography  Save this article

A continuous-time HMM approach to modeling the magnitude-frequency distribution of earthquakes

Author

Listed:
  • Shaochuan Lu

Abstract

The magnitude-frequency distribution (MFD) of earthquake is a fundamental statistic in seismology. The so-called b-value in the MFD is of particular interest in geophysics. A continuous time hidden Markov model (HMM) is proposed for characterizing the variability of b-values. The HMM-based approach to modeling the MFD has some appealing properties over the widely used sliding-window approach. Often, large variability appears in the estimation of b-value due to window size tuning, which may cause difficulties in interpretation of b-value heterogeneities. Continuous-time hidden Markov models (CT-HMMs) are widely applied in various fields. It bears some advantages over its discrete time counterpart in that it can characterize heterogeneities appearing in time series in a finer time scale, particularly for highly irregularly-spaced time series, such as earthquake occurrences. We demonstrate an expectation–maximization algorithm for the estimation of general exponential family CT-HMM. In parallel with discrete-time hidden Markov models, we develop a continuous time version of Viterbi algorithm to retrieve the overall optimal path of the latent Markov chain. The methods are applied to New Zealand deep earthquakes. Before the analysis, we first assess the completeness of catalogue events to assure the analysis is not biased by missing data. The estimation of b-value is stable over the selection of magnitude thresholds, which is ideal for the interpretation of b-value variability.

Suggested Citation

  • Shaochuan Lu, 2017. "A continuous-time HMM approach to modeling the magnitude-frequency distribution of earthquakes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 71-88, January.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:1:p:71-88
    DOI: 10.1080/02664763.2016.1161736
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1161736
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1161736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bountzis, P. & Papadimitriou, E. & Tsaklidis, G., 2020. "Earthquake clusters identification through a Markovian Arrival Process (MAP): Application in Corinth Gulf (Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:1:p:71-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.