IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v539y2020ics0378437119316486.html
   My bibliography  Save this article

Modularized convex nonnegative matrix factorization for community detection in signed and unsigned networks

Author

Listed:
  • Yan, Chao
  • Chang, Zhenhai

Abstract

NMF-based models in unsigned networks, the links of which are positive links only, have been applied in many aspects, such as community detection, link prediction, etc. However, NMF has been under-explored for community discovery in signed networks due to its constraint of non-negativity. Also, there are few related studies which could find out accurate partitions on both signed and unsigned networks due to their difference of community structure. In this paper, we propose a novel modularized convex nonnegative matrix factorization model which combines signed modularized information with convex NMF model, improving the accuracy of community detection in signed and unsigned networks. As for model selection, we extend the modularity density to signed networks and employ the signed modularity density to determine the number of communities automatically. Finally, the effectiveness of our model is verified on both synthetic and real-world networks.

Suggested Citation

  • Yan, Chao & Chang, Zhenhai, 2020. "Modularized convex nonnegative matrix factorization for community detection in signed and unsigned networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
  • Handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316486
    DOI: 10.1016/j.physa.2019.122904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119316486
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    3. Zhou, Jianlin & Li, Lingbo & Zeng, An & Fan, Ying & Di, Zengru, 2018. "Random walk on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 558-566.
    4. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    5. Pan, Ying & Li, De-Hua & Liu, Jian-Guo & Liang, Jing-Zhang, 2010. "Detecting community structure in complex networks via node similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2849-2857.
    6. Yan, Chao & Chang, Zhenhai, 2019. "Modularized tri-factor nonnegative matrix factorization for community detection enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    7. Li-Ying Tang & Sheng-Nan Li & Jian-Hong Lin & Qiang Guo & Jian-Guo Liu, 2016. "Community structure detection based on the neighbor node degree information," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(04), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sukeda, Issey & Miyauchi, Atsushi & Takeda, Akiko, 2023. "A study on modularity density maximization: Column generation acceleration and computational complexity analysis," European Journal of Operational Research, Elsevier, vol. 309(2), pages 516-528.
    2. Wei Zhang & Shanshan Yu & Ling Wang & Wei Guo & Man-Fai Leung, 2024. "Constrained Symmetric Non-Negative Matrix Factorization with Deep Autoencoders for Community Detection," Mathematics, MDPI, vol. 12(10), pages 1-17, May.
    3. Agrawal, Smita & Patel, Atul, 2021. "SAG Cluster: An unsupervised graph clustering based on collaborative similarity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Yang, Kai & Guo, Qiang & Liu, Jian-Guo, 2018. "Community detection via measuring the strength between nodes for dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 256-264.
    3. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    4. Chae, Bongsug (Kevin), 2019. "A General framework for studying the evolution of the digital innovation ecosystem: The case of big data," International Journal of Information Management, Elsevier, vol. 45(C), pages 83-94.
    5. Da Kuang & Sangwoon Yun & Haesun Park, 2015. "SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering," Journal of Global Optimization, Springer, vol. 62(3), pages 545-574, July.
    6. Šubelj, Lovro & Bajec, Marko, 2011. "Community structure of complex software systems: Analysis and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2968-2975.
    7. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    8. Wang, Xiao & Cao, Xiaochun & Jin, Di & Cao, Yixin & He, Dongxiao, 2016. "The (un)supervised NMF methods for discovering overlapping communities as well as hubs and outliers in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 22-34.
    9. Zhao, Zi-Juan & Guo, Qiang & Yu, Kai & Liu, Jian-Guo, 2020. "Identifying influential nodes for the networks with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    10. Jiao, Qing-Ju & Huang, Yan & Shen, Hong-Bin, 2015. "Community mining with new node similarity by incorporating both global and local topological knowledge in a constrained random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 363-371.
    11. Zhu, Junfang & Ren, Xuezao & Ma, Peijie & Gao, Kun & Wang, Bing-Hong & Zhou, Tao, 2022. "Detecting network communities via greedy expanding based on local superiority index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    12. Sun, Hong-liang & Ch’ng, Eugene & Yong, Xi & Garibaldi, Jonathan M. & See, Simon & Chen, Duan-bing, 2018. "A fast community detection method in bipartite networks by distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 108-120.
    13. Wu, Xunlian & Zhang, Han & Quan, Yining & Miao, Qiguang & Sun, Peng Gang, 2023. "Graph embedding based on motif-aware feature propagation for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    14. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    15. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    16. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    17. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    18. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    19. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    20. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.