IDEAS home Printed from
   My bibliography  Save this article

Cooperative fibril model: Native, amyloid-like fibril and unfolded states of proteins


  • Espinoza Ortiz, J.S.
  • Dias, Cristiano L.


In this paper, we start by studying the cooperative model of Hansen et al. (1998) which describes folding and unfolding transitions of proteins. Analytical expressions for different thermodynamic quantities are derived, including the degree of thermodynamic cooperativity. This model is then extended to take into account proteins that can aggregate forming amyloid-like fibril structures. Changes to the model were guided by our current understanding of the thermodynamics of fibril formation. We provide analytical equations for different thermodynamic quantities of the modified model and we study its phase diagram as a function of temperature and the binding energy of the protein to the fibril ε⋆. We find that for positive ε⋆ values, fibrils are the most stable state at low temperatures. Moreover, the model predicts that fibrils can coexist with heat unfolded, native, or cold unfolded states.

Suggested Citation

  • Espinoza Ortiz, J.S. & Dias, Cristiano L., 2018. "Cooperative fibril model: Native, amyloid-like fibril and unfolded states of proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 154-165.
  • Handle: RePEc:eee:phsmap:v:511:y:2018:i:c:p:154-165
    DOI: 10.1016/j.physa.2018.07.045

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:511:y:2018:i:c:p:154-165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.