IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp49-62.html
   My bibliography  Save this article

Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model

Author

Listed:
  • Li, Xin
  • Li, Xingang
  • Xiao, Yao
  • Jia, Bin

Abstract

Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car–truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.

Suggested Citation

  • Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:49-62
    DOI: 10.1016/j.physa.2015.12.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000479
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peeta, Srinivas & Zhang, Pengcheng & Zhou, Weimin, 2005. "Behavior-based analysis of freeway car-truck interactions and related mitigation strategies," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 417-451, June.
    2. Chen, Chen & Chen, Jianqiao & Guo, Xiwei, 2010. "Influences of overtaking on two-lane traffic with signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 141-148.
    3. Li, Xin-Gang & Jia, Bin & Gao, Zi-You & Jiang, Rui, 2006. "A realistic two-lane cellular automata traffic model considering aggressive lane-changing behavior of fast vehicle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 479-486.
    4. Lárraga, M.E. & Alvarez-Icaza, L., 2010. "Cellular automaton model for traffic flow based on safe driving policies and human reactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5425-5438.
    5. Jia, Bin & Jiang, Rui & Wu, Qing-Song & Hu, Mao-bin, 2005. "Honk effect in the two-lane cellular automaton model for traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 544-552.
    6. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    7. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
    8. Tang, Tie-Qiao & Chen, Liang & Wu, Yong-Hong & Caccetta, Lou, 2015. "A macro traffic flow model accounting for real-time traffic state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 55-67.
    9. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    10. Yang, Da & Jin, Peter (Jing) & Pu, Yun & Ran, Bin, 2014. "Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 371-383.
    11. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    12. Jin, Sheng & Wang, Dian-Hai & Huang, Zhi-Yi & Tao, Peng-Fei, 2011. "Visual angle model for car-following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1931-1940.
    13. Tang, T.Q. & Huang, H.J. & Xu, G., 2008. "A new macro model with consideration of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6845-6856.
    14. Rickert, M. & Nagel, K. & Schreckenberg, M. & Latour, A., 1996. "Two lane traffic simulations using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 231(4), pages 534-550.
    15. Gao, Kun & Jiang, Rui & Wang, Bing-Hong & Wu, Qing-Song, 2009. "Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in a three-phase traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3233-3243.
    16. Tang, T.Q. & Li, P. & Yang, X.B., 2013. "An extended macro model for traffic flow with consideration of multi static bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3537-3545.
    17. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    18. Chowdhury, Debashish & Wolf, Dietrich E. & Schreckenberg, Michael, 1997. "Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 417-439.
    19. Naito, Yuichi & Nagatani, Takashi, 2012. "Effect of headway and velocity on safety–collision transition induced by lane changing in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1626-1635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "A cellular automaton model for ship traffic flow in waterways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 705-717.
    2. Lu, Xingyu & Zhu, Huibing & Wang, Jieguang & Zhang, Ming & Zhou, Chunchun & Zhang, Huafeng, 2022. "Modeling impacts of the tunnel section on the mixed traffic flow: A case study of Jiaodong’ao Tunnel in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Dailisan, Damian N. & Lim, May T., 2020. "Crossover transitions in a bus–car mixed-traffic cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    6. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Wang, Xuan & Zeng, Junwei & Qian, Yongsheng & Wei, Xuting & Zhang, Futao, 2024. "Heterogeneous traffic flow of expressway with Level 2 autonomous vehicles considering moving bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    8. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    10. Hou, Guangyang & Chen, Suren & Bao, Yulong, 2022. "Development of travel time functions for disrupted urban arterials with microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    11. Zhang, Xiangzhou & Shi, Zhongke & Yu, Shaowei & Ma, Lijing, 2023. "A new car-following model considering driver’s desired visual angle on sharp curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    12. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
    13. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
    3. Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    4. Wang, Jinghui & Lv, Wei & Jiang, Yajuan & Qin, Shuangshuang & Li, Jiawei, 2021. "A multi-agent based cellular automata model for intersection traffic control simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    5. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    6. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
    7. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    8. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    9. Lv, Wei & Song, Wei-guo & Liu, Xiao-dong & Ma, Jian, 2013. "A microscopic lane changing process model for multilane traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1142-1152.
    10. Kuang, Xianyan & Chen, Ziru, 2022. "Trajectory research of Cellular Automaton Model based on real driving behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    11. Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming, 2011. "Three-lane changing behaviour simulation using a modified optimal velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2303-2314.
    13. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    14. Tie-Qiao Tang & Yun-Peng Wang & Xiao-Bao Yang & Hai-Jun Huang, 2014. "A Multilane Traffic Flow Model Accounting for Lane Width, Lane-Changing and the Number of Lanes," Networks and Spatial Economics, Springer, vol. 14(3), pages 465-483, December.
    15. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    16. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    17. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    18. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    19. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    20. Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:49-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.