Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2015.12.157
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
- Jin, Sheng & Wang, Dian-Hai & Huang, Zhi-Yi & Tao, Peng-Fei, 2011. "Visual angle model for car-following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1931-1940.
- Tang, T.Q. & Huang, H.J. & Xu, G., 2008. "A new macro model with consideration of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6845-6856.
- Rickert, M. & Nagel, K. & Schreckenberg, M. & Latour, A., 1996. "Two lane traffic simulations using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 231(4), pages 534-550.
- Gao, Kun & Jiang, Rui & Wang, Bing-Hong & Wu, Qing-Song, 2009. "Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in a three-phase traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3233-3243.
- Peeta, Srinivas & Zhang, Pengcheng & Zhou, Weimin, 2005. "Behavior-based analysis of freeway car-truck interactions and related mitigation strategies," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 417-451, June.
- Chen, Chen & Chen, Jianqiao & Guo, Xiwei, 2010. "Influences of overtaking on two-lane traffic with signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 141-148.
- Tang, T.Q. & Li, P. & Yang, X.B., 2013. "An extended macro model for traffic flow with consideration of multi static bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3537-3545.
- Li, Xin-Gang & Jia, Bin & Gao, Zi-You & Jiang, Rui, 2006. "A realistic two-lane cellular automata traffic model considering aggressive lane-changing behavior of fast vehicle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 479-486.
- Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
- Lárraga, M.E. & Alvarez-Icaza, L., 2010. "Cellular automaton model for traffic flow based on safe driving policies and human reactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5425-5438.
- Jia, Bin & Jiang, Rui & Wu, Qing-Song & Hu, Mao-bin, 2005. "Honk effect in the two-lane cellular automaton model for traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 544-552.
- Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
- Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
- Chowdhury, Debashish & Wolf, Dietrich E. & Schreckenberg, Michael, 1997. "Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 417-439.
- Tang, Tie-Qiao & Chen, Liang & Wu, Yong-Hong & Caccetta, Lou, 2015. "A macro traffic flow model accounting for real-time traffic state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 55-67.
- Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
- Yang, Da & Jin, Peter (Jing) & Pu, Yun & Ran, Bin, 2014. "Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 371-383.
- Naito, Yuichi & Nagatani, Takashi, 2012. "Effect of headway and velocity on safety–collision transition induced by lane changing in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1626-1635.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "A cellular automaton model for ship traffic flow in waterways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 705-717.
- Lu, Xingyu & Zhu, Huibing & Wang, Jieguang & Zhang, Ming & Zhou, Chunchun & Zhang, Huafeng, 2022. "Modeling impacts of the tunnel section on the mixed traffic flow: A case study of Jiaodong’ao Tunnel in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
- Dailisan, Damian N. & Lim, May T., 2020. "Crossover transitions in a bus–car mixed-traffic cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
- Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Hou, Guangyang & Chen, Suren & Bao, Yulong, 2022. "Development of travel time functions for disrupted urban arterials with microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
- Zhang, Xiangzhou & Shi, Zhongke & Yu, Shaowei & Ma, Lijing, 2023. "A new car-following model considering driver’s desired visual angle on sharp curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
- Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
- Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
- Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
- Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
- Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
- Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
- Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
- Wang, Jinghui & Lv, Wei & Jiang, Yajuan & Qin, Shuangshuang & Li, Jiawei, 2021. "A multi-agent based cellular automata model for intersection traffic control simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
- Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
- Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Lv, Wei & Song, Wei-guo & Fang, Zhi-ming, 2011. "Three-lane changing behaviour simulation using a modified optimal velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2303-2314.
- Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
- Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
- Lv, Wei & Song, Wei-guo & Liu, Xiao-dong & Ma, Jian, 2013. "A microscopic lane changing process model for multilane traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1142-1152.
- Kuang, Xianyan & Chen, Ziru, 2022. "Trajectory research of Cellular Automaton Model based on real driving behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
- Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
- Tie-Qiao Tang & Yun-Peng Wang & Xiao-Bao Yang & Hai-Jun Huang, 2014. "A Multilane Traffic Flow Model Accounting for Lane Width, Lane-Changing and the Number of Lanes," Networks and Spatial Economics, Springer, vol. 14(3), pages 465-483, December.
- Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
- Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
- Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
- Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
- Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
- Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
More about this item
Keywords
Limited deceleration capability; Heterogeneous traffic flow; Active deceleration behavior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:49-62. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.