IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i1p141-148.html
   My bibliography  Save this article

Influences of overtaking on two-lane traffic with signals

Author

Listed:
  • Chen, Chen
  • Chen, Jianqiao
  • Guo, Xiwei

Abstract

Based on the cellular automata method (CA method), two-lane traffic flow with the consideration of overtaking is investigated. Discrete equations are proposed to describe the traffic dynamics by using the rules of CA model. Influences of signal cycle time (ts) and vehicular density (ρ) on the mean velocity 〈v〉 and mean overtaking times 〈c〉 of the traffic flow are discussed. The effects of slow vehicles and road barricades on the traffic flow are also studied. Simulation results shows that the vehicular density and the signal cycle time have significant influences on the traffic flow. The mean velocity of the traffic flow could keep a comparatively large value when ρ≤0.45. For a certain value of ρ, 〈v〉 displays a serrated fluctuation with ts. Therefore, there may exist a certain combination of ρ and ts which optimizes the traffic flow efficiency. As compared with the results in Nagatani (2009) [7], the model proposed here and the simulation results which took into account the effects of signal cycle time, slow vehicles, and road barricades on the traffic flow with overtaking allowed, can reflect the situation of traffic flow in a more realistic way.

Suggested Citation

  • Chen, Chen & Chen, Jianqiao & Guo, Xiwei, 2010. "Influences of overtaking on two-lane traffic with signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 141-148.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:1:p:141-148
    DOI: 10.1016/j.physa.2009.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109007444
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komada, Kazuhito & Masukura, Shuichi & Nagatani, Takashi, 2009. "Effect of gravitational force upon traffic flow with gradients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2880-2894.
    2. Li, Xin-Gang & Jia, Bin & Gao, Zi-You & Jiang, Rui, 2006. "A realistic two-lane cellular automata traffic model considering aggressive lane-changing behavior of fast vehicle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 479-486.
    3. Zhu, H.B. & Lei, L. & Dai, S.Q., 2009. "Two-lane traffic simulations with a blockage induced by an accident car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2903-2910.
    4. Ngoduy, D. & Hoogendoorn, S.P. & Liu, R., 2009. "Continuum modeling of cooperative traffic flow dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2705-2716.
    5. Tang, T.Q. & Huang, H.J. & Mei, C.Q. & Zhao, S.G., 2008. "A dynamic model for traffic network flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2603-2610.
    6. Li, Xin-Gang & Gao, Zi-You & Jia, Bin & Jiang, Rui, 2009. "Deceleration in advance in the Nagel–Schreckenberg traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2051-2060.
    7. Nagatani, Takashi, 2009. "Traffic states and fundamental diagram in cellular automaton model of vehicular traffic controlled by signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1673-1681.
    8. McKee, Alan & McCartney, Mark, 2009. "Stability and instability in a class of car following model on a closed loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2476-2482.
    9. Wei, Ziqiang & Hong, Yiguang & Wang, Dahui, 2009. "The phase diagram and the pathway of phase transitions for traffic flow in a circular one-lane roadway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1665-1672.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagatani, Takashi, 2020. "Traffic flow on percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    3. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    4. Nagatani, Takashi, 2021. "Traffic flow on star graph: Nonlinear diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    2. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    3. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.
    4. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    5. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
    6. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    7. Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    8. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "Marine traffic model based on cellular automaton: Considering the change of the ship’s velocity under the influence of the weather and sea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 480-494.
    9. Junwei Zeng & Yongsheng Qian & Bingbing Wang & Tingjuan Wang & Xuting Wei, 2019. "The Impact of Traffic Crashes on Urban Network Traffic Flow," Sustainability, MDPI, vol. 11(14), pages 1-14, July.
    10. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
    11. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    12. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    13. Yin, Jiacheng & Li, Zongping & Cao, Peng & Li, Linheng & Ju, Yanni, 2023. "Car-following modeling based on Morse model with consideration of road slope in connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    14. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    15. Mu, Rui & Yamamoto, Toshiyuki, 2019. "Analysis of traffic flow with micro-cars with respect to safety and environmental impact," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 217-241.
    16. Song, Tao & Zhu, Wen-Xing, 2020. "Study on state feedback control strategy for car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Zhang, Lele & de Gier, Jan & Garoni, Timothy M., 2014. "Traffic disruption and recovery in road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 82-102.
    18. Davis, L.C., 2016. "Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 320-332.
    19. Song Fang & Linghong Shen & Jianxiao Ma & Chubo Xu, 2022. "Study on the Design of Variable Lane Demarcation in Urban Tunnels," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    20. Gabriel Obed Fosu & Francis Tabi Oduro & Carlo Caligaris, 2021. "Multilane analysis of a viscous second-order macroscopic traffic flow model," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:1:p:141-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.