IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics

  • Caraiani, Petre

We investigate the properties of the returns of the main emerging stock markets from Europe by means of complex networks. We transform the series of daily returns into complex networks, and analyze the local properties of these networks with respect to degree distributions, clustering, or average line length. We further use the clustering coefficients as quantities describing the local structure of the network, and approach them by using multifractal analysis. We find evidence of scale-free networks and multifractality of clustering coefficients.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0378437112001240
Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

Volume (Year): 391 (2012)
Issue (Month): 13 ()
Pages: 3629-3637

as
in new window

Handle: RePEc:eee:phsmap:v:391:y:2012:i:13:p:3629-3637
Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 38(2), pages 363-371, 03.
  2. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
  3. Domino, Krzysztof, 2011. "The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 98-109.
  4. Timotej Jagric & Boris Podobnik & Marko Kolanovic, 2005. "Does the Efficient Market Hypothesis Hold?: Evidence from Six Transition Economies," Eastern European Economics, M.E. Sharpe, Inc., vol. 43(4), pages 79-103, August.
  5. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
  6. Li, Ping & Wang, Bing-Hong, 2007. "Extracting hidden fluctuation patterns of Hang Seng stock index from network topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 519-526.
  7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
  8. Chuang Liu & Wei-Xing Zhou, 2009. "Superfamily classification of nonstationary time series based on DFA scaling exponents," Papers 0912.2016, arXiv.org.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:13:p:3629-3637. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.