IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i12p2408-2413.html
   My bibliography  Save this article

A modified SIS model with an infective medium on complex networks and its global stability

Author

Listed:
  • Yang, Meng
  • Chen, Guanrong
  • Fu, Xinchu

Abstract

In this paper, we propose a modified susceptible–infected–susceptible model with an infective medium, which describes epidemics transmitted through an infective medium on complex networks. We examine epidemic thresholds for disease spreading by using this new model and compare it with the standard SIS model and another SIS model having an infective medium. We also study and compare the effects of the uniform immunization scheme on different models. We finally give some necessary and sufficient conditions for the global stability of the new model.

Suggested Citation

  • Yang, Meng & Chen, Guanrong & Fu, Xinchu, 2011. "A modified SIS model with an infective medium on complex networks and its global stability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2408-2413.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:12:p:2408-2413
    DOI: 10.1016/j.physa.2011.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111001154
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Hongjing & Duan, Zhisheng & Chen, Guanrong, 2008. "An SIS model with infective medium on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2133-2144.
    2. James Holland Jones & Mark S. Handcock, 2003. "Sexual contacts and epidemic thresholds," Nature, Nature, vol. 423(6940), pages 605-606, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ruixia & Li, Deyu & Jin, Zhen, 2015. "Dynamic analysis of a delayed model for vector-borne diseases on bipartite networks," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 342-352.
    2. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    3. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    4. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    7. Leyi Zheng & Longkun Tang, 2019. "A Node-Based SIRS Epidemic Model with Infective Media on Complex Networks," Complexity, Hindawi, vol. 2019, pages 1-14, February.
    8. Sanders, Johnathan & Noble, Benjamin & Van Gorder, Robert A. & Riggs, Cortney, 2012. "Mobility matrix evolution for an SIS epidemic patch model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6256-6267.
    9. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    10. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    11. Dong, Suyalatu & Deng, Yanbin & Huang, Yong-Chang, 2019. "Exact analytic solution to nonlinear dynamic system of equations for information propagation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 319-329.
    12. Li, Chun-Hsien, 2015. "Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 234-243.
    13. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    14. Yang, Lu-Xing & Yang, Xiaofan, 2014. "The spread of computer viruses over a reduced scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 173-184.
    15. Xie, Yingkang & Wang, Zhen, 2021. "Transmission dynamics, global stability and control strategies of a modified SIS epidemic model on complex networks with an infective medium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 23-34.
    16. Juang, Jonq & Liang, Yu-Hao, 2015. "Analysis of a general SIS model with infective vectors on the complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 382-395.
    17. Li, Tao & Liu, Xiongding & Wu, Jie & Wan, Chen & Guan, Zhi-Hong & Wang, Yuanmei, 2016. "An epidemic spreading model on adaptive scale-free networks with feedback mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 649-656.
    18. Lei, Mingli & Cheong, Kang Hao, 2022. "Node influence ranking in complex networks: A local structure entropy approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    20. Wei, Xiaodan & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability and attractivity of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 789-798.
    21. Wu, Yingbo & Li, Pengdeng & Yang, Lu-Xing & Yang, Xiaofan & Tang, Yuan Yan, 2017. "A theoretical method for assessing disruptive computer viruses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 325-336.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juang, Jonq & Liang, Yu-Hao, 2015. "Analysis of a general SIS model with infective vectors on the complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 382-395.
    2. Gong, Yong-Wang & Song, Yu-Rong & Jiang, Guo-Ping, 2013. "Time-varying human mobility patterns with metapopulation epidemic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4242-4251.
    3. Markus M. Mobius & Neel Rao & Tanya Rosenblat, 2007. "Social networks and vaccination decisions," Working Papers 07-12, Federal Reserve Bank of Boston.
    4. Wang, Dan & Cheng, Shun-Jun, 2016. "A two-stage broadcast message propagation model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1286-1293.
    5. Xie, Yingkang & Wang, Zhen, 2021. "Transmission dynamics, global stability and control strategies of a modified SIS epidemic model on complex networks with an infective medium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 23-34.
    6. Wang, Jun & Cai, Shimin & Wang, Wei & Zhou, Tao, 2023. "Link cooperation effect of cooperative epidemics on complex networks," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    7. Kai Gong & Ming Tang & Pak Ming Hui & Hai Feng Zhang & Do Younghae & Ying-Cheng Lai, 2013. "An Efficient Immunization Strategy for Community Networks," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    8. Shah Jamal Alam & Ruth Meyer & Gina Ziervogel & Scott Moss, 2007. "The Impact of HIV/AIDS in the Context of Socioeconomic Stressors: an Evidence-Driven Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-7.
    9. Leyi Zheng & Longkun Tang, 2019. "A Node-Based SIRS Epidemic Model with Infective Media on Complex Networks," Complexity, Hindawi, vol. 2019, pages 1-14, February.
    10. Sanders, Johnathan & Noble, Benjamin & Van Gorder, Robert A. & Riggs, Cortney, 2012. "Mobility matrix evolution for an SIS epidemic patch model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6256-6267.
    11. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    12. Rodriguez-Avi, J. & Conde-Sanchez, A. & Saez-Castillo, A.J. & Olmo-Jimenez, M.J., 2007. "A new generalization of the Waring distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6138-6150, August.
    13. Zhang, Chunming & Huang, Haitao, 2016. "Optimal control strategy for a novel computer virus propagation model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 251-265.
    14. Singh, Anurag & Arquam, Md, 2022. "Epidemiological modeling for COVID-19 spread in India with the effect of testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    15. Zhang, Ruixia & Li, Deyu & Jin, Zhen, 2015. "Dynamic analysis of a delayed model for vector-borne diseases on bipartite networks," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 342-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:12:p:2408-2413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.