IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Complexity vs. stability in small-world networks

Listed author(s):
  • Sinha, Sitabhra

According to the May–Wigner stability theorem, increasing the complexity of a network inevitably leads to its destabilization, such that a small perturbation will be able to disrupt the entire system. One of the principal arguments against this observation is that it is valid only for random networks, and therefore does not apply to real-world networks, which presumably are structured. Here, we examine how the introduction of small-world topological structure into networks affects their stability. Our results indicate that, in structured networks, the parameter values at which the stability–instability transition occurs with increasing complexity is identical to that predicted by the May–Wigner criteria. However, the nature of the transition, as measured by the finite-size scaling exponent, appears to change as the network topology transforms from regular to random, with the small-world regime as the cross-over region. This behavior is related to the localization of the largest eigenvalues along the real axis in the eigenvalue plain with increasing regularity in the network.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

Volume (Year): 346 (2005)
Issue (Month): 1 ()
Pages: 147-153

in new window

Handle: RePEc:eee:phsmap:v:346:y:2005:i:1:p:147-153
DOI: 10.1016/j.physa.2004.08.062
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:346:y:2005:i:1:p:147-153. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.