IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v2y2015icp150-155.html
   My bibliography  Save this article

A mixed integer linear programming model applied in barge planning for Omya

Author

Listed:
  • Bredström, David
  • Haugen, Kjetil
  • Olstad, Asmund
  • Novotný, Jan

Abstract

This article presents a mathematical model for barge transport planning on the river Rhine, which is part of a decision support system (DSS) recently taken into use by the Swiss company Omya. The system is operated by Omya’s regional office in Cologne, Germany, responsible for distribution planning at the regional distribution center (RDC) in Moerdijk, the Netherlands. The distribution planning is a vital part of supply chain management of Omya’s production of Norwegian high quality calcium carbonate slurry, supplied to European paper manufacturers. The DSS operates within a vendor managed inventory (VMI) setting, where the customer inventories are monitored by Omya, who decides upon the refilling days and quantities delivered by barges. The barge planning problem falls into the category of inventory routing problems (IRP) and is further characterized with multiple products, heterogeneous fleet with availability restrictions (the fleet is owned by third party), vehicle compartments, dependency of barge capacity on water-level, multiple customer visits, bounded customer inventories and rolling planning horizon. There are additional modelling details which had to be considered to make it possible to employ the model in practice at a sufficient level of detail. To the best of our knowledge, we have not been able to find similar models covering all these aspects in barge planning. This article presents the developed mixed-integer programming model and discusses practical experience with its solution. Briefly, it also puts the model into the context of the entire business case of value chain optimization in Omya.

Suggested Citation

  • Bredström, David & Haugen, Kjetil & Olstad, Asmund & Novotný, Jan, 2015. "A mixed integer linear programming model applied in barge planning for Omya," Operations Research Perspectives, Elsevier, vol. 2(C), pages 150-155.
  • Handle: RePEc:eee:oprepe:v:2:y:2015:i:c:p:150-155
    DOI: 10.1016/j.orp.2015.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716015000160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2015.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    2. Stéphane Dauzère-Pérès & Atle Nordli & Asmund Olstad & Kjetil Haugen & Ulrich Koester & Myrstad Per Olav & Geir Teistklub & Alf Reistad, 2007. "Omya Hustadmarmor Optimizes Its Supply Chain for Delivering Calcium Carbonate Slurry to European Paper Manufacturers," Interfaces, INFORMS, vol. 37(1), pages 39-51, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gumuskaya, Volkan & van Jaarsveld, Willem & Dijkman, Remco & Grefen, Paul & Veenstra, Albert, 2020. "Dynamic barge planning with stochastic container arrivals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    2. Raut, Rakesh D. & Gardas, Bhaskar B. & Narwane, Vaibhav S. & Narkhede, Balkrishna E., 2019. "Improvement in the food losses in fruits and vegetable supply chain - a perspective of cold third-party logistics approach," Operations Research Perspectives, Elsevier, vol. 6(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    2. Meyr, H., 2000. "Simultaneous lotsizing and scheduling by combining local search with dual reoptimization," European Journal of Operational Research, Elsevier, vol. 120(2), pages 311-326, January.
    3. Rossi, Tommaso & Pozzi, Rossella & Testa, Mariapaola, 2017. "EOQ-based inventory management in single-machine multi-item systems," Omega, Elsevier, vol. 71(C), pages 106-113.
    4. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    5. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    6. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    7. Almeder, Christian, 2010. "A hybrid optimization approach for multi-level capacitated lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 200(2), pages 599-606, January.
    8. Haugen, Kjetil K. & Olstad, Asmund & Pettersen, Bard I., 2007. "The profit maximizing capacitated lot-size (PCLSP) problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 165-176, January.
    9. Hemmati, Ahmad & Hvattum, Lars Magnus & Christiansen, Marielle & Laporte, Gilbert, 2016. "An iterative two-phase hybrid matheuristic for a multi-product short sea inventory-routing problem," European Journal of Operational Research, Elsevier, vol. 252(3), pages 775-788.
    10. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    11. Lukac, Zrinka & Soric, Kristina & Rosenzweig, Visnja Vojvodic, 2008. "Production planning problem with sequence dependent setups as a bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1504-1512, June.
    12. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    13. Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
    14. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    15. Boonmee, Atiwat & Sethanan, Kanchana, 2016. "A GLNPSO for multi-level capacitated lot-sizing and scheduling problem in the poultry industry," European Journal of Operational Research, Elsevier, vol. 250(2), pages 652-665.
    16. Kristin Uggen & Marte Fodstad & Vibeke Nørstebø, 2013. "Using and extending fix-and-relax to solve maritime inventory routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 355-377, July.
    17. Kovcs, Andrs & Brown, Kenneth N. & Tarim, S. Armagan, 2009. "An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups," International Journal of Production Economics, Elsevier, vol. 118(1), pages 282-291, March.
    18. Sanja Petrovic & Carole Fayad & Dobrila Petrovic & Edmund Burke & Graham Kendall, 2008. "Fuzzy job shop scheduling with lot-sizing," Annals of Operations Research, Springer, vol. 159(1), pages 275-292, March.
    19. Bredstrom, David & Lundgren, Jan T. & Ronnqvist, Mikael & Carlsson, Dick & Mason, Andrew, 2004. "Supply chain optimization in the pulp mill industry--IP models, column generation and novel constraint branches," European Journal of Operational Research, Elsevier, vol. 156(1), pages 2-22, July.
    20. Stadtler, Hartmut, 2005. "Supply chain management and advanced planning--basics, overview and challenges," European Journal of Operational Research, Elsevier, vol. 163(3), pages 575-588, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:2:y:2015:i:c:p:150-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.