IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v66y2004i2p207-217.html
   My bibliography  Save this article

Interval solutions for interval algebraic equations

Author

Listed:
  • Polyak, B.T.
  • Nazin, S.A.

Abstract

In the framework of interval uncertainty, a well-known classical problem in numerical analysis is considered, namely, to find “the best” interval solution for interval system of linear algebraic equations. This problem is known to be NP-hard and can be solved via multiple linear programming. In present paper, a simple approach is proposed for some particular models of interval uncertainty. This method gives an optimal interval solution without linear programming and is tractable for moderate-size problems. For large-scale problems an effective overbounding technique is developed.

Suggested Citation

  • Polyak, B.T. & Nazin, S.A., 2004. "Interval solutions for interval algebraic equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(2), pages 207-217.
  • Handle: RePEc:eee:matcom:v:66:y:2004:i:2:p:207-217
    DOI: 10.1016/j.matcom.2003.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475403002052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2003.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yu., 1998. "Semidefinite relaxation and nonconvex quadratic optimization," LIDAM Reprints CORE 1362, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    2. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    3. Florian Jarre & Felix Lieder & Ya-Feng Liu & Cheng Lu, 2020. "Set-completely-positive representations and cuts for the max-cut polytope and the unit modulus lifting," Journal of Global Optimization, Springer, vol. 76(4), pages 913-932, April.
    4. Hezhi Luo & Yuanyuan Chen & Xianye Zhang & Duan Li & Huixian Wu, 2020. "Effective Algorithms for Optimal Portfolio Deleveraging Problem with Cross Impact," Papers 2012.07368, arXiv.org, revised Jan 2021.
    5. Hezhi Luo & Xiaodong Ding & Jiming Peng & Rujun Jiang & Duan Li, 2021. "Complexity Results and Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 180-197, January.
    6. Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
    7. Xiaodong Ding & Hezhi Luo & Huixian Wu & Jianzhen Liu, 2021. "An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 80(1), pages 89-120, September.
    8. Simai He & Bo Jiang & Zhening Li & Shuzhong Zhang, 2014. "Probability Bounds for Polynomial Functions in Random Variables," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 889-907, August.
    9. Zhuoyi Xu & Yong Xia & Jiulin Wang, 2021. "Cheaper relaxation and better approximation for multi-ball constrained quadratic optimization and extension," Journal of Global Optimization, Springer, vol. 80(2), pages 341-356, June.
    10. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Other publications TiSEM 88640b6d-5240-472d-8669-4, Tilburg University, School of Economics and Management.
    11. Eric Auerbach, 2019. "Testing for Differences in Stochastic Network Structure," Papers 1903.11117, arXiv.org, revised Nov 2020.
    12. C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
    13. Hezhi Luo & Xianye Zhang & Huixian Wu & Weiqiang Xu, 2023. "Effective algorithms for separable nonconvex quadratic programming with one quadratic and box constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 199-240, September.
    14. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    15. Hezhi Luo & Xiaodi Bai & Jiming Peng, 2019. "Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 964-992, March.
    16. D. Henrion & S. Tarbouriech & D. Arzelier, 2001. "LMI Approximations for the Radius of the Intersection of Ellipsoids: Survey," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 1-28, January.
    17. de Klerk, E., 2008. "The complexity of optimizing over a simplex, hypercube or sphere : A short survey," Other publications TiSEM 485b6860-cf1d-4cad-97b8-2, Tilburg University, School of Economics and Management.
    18. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Other publications TiSEM 9f3fba48-8501-4ec8-9241-5, Tilburg University, School of Economics and Management.
    19. Jingnan Chen & Liming Feng & Jiming Peng & Yinyu Ye, 2014. "Analytical Results and Efficient Algorithm for Optimal Portfolio Deleveraging with Market Impact," Operations Research, INFORMS, vol. 62(1), pages 195-206, February.
    20. Marco Locatelli, 2013. "Approximation algorithm for a class of global optimization problems," Journal of Global Optimization, Springer, vol. 55(1), pages 13-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:66:y:2004:i:2:p:207-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.