IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v199y2022icp359-373.html
   My bibliography  Save this article

Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra’s population growth model

Author

Listed:
  • Hoang, Manh Tuan

Abstract

In this work, we extend the Mickens’ methodology to construct nonstandard finite difference (NSFD) schemes preserving positivity and boundedness of the nonlinear Volterra integro-differential population growth model. A rigorously mathematical study for the positivity, boundedness, convergence and error bounds of the proposed NSFD schemes is provided. It is proved that the NSFD schemes not only converge, but also preserve the positivity and boundedness of the integro-differential model for all finite step sizes. Furthermore, the constructed NSFD schemes can be extended to formulate nonstandard discretization schemes for general Volterra integral equations and fractional-order Volterra integro-differential population growth models. Finally, the theoretical results and advantages of the NSFD schemes over standard ones are supported and illustrated by a set of numerical experiments. The numerical experiments show that some typical standard numerical schemes such as the Euler scheme, the second order and classical fourth order Runge–Kutta schemes fail to correctly preserve the positivity and boundedness for some given step sizes. As a result, they can generate numerical approximations that are completely different from the solutions of the integro-differential model. However, these properties are preserved by the NSFD schemes when using the same step sizes.

Suggested Citation

  • Hoang, Manh Tuan, 2022. "Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra’s population growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 359-373.
  • Handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:359-373
    DOI: 10.1016/j.matcom.2022.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mickens, Ronald E., 2003. "A nonstandard finite difference scheme for the diffusionless Burgers equation with logistic reaction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(1), pages 117-124.
    2. Aderogba, A.A. & Fabelurin, O.O. & Akindeinde, S.O. & Adewumi, A.O. & Ogundare, B.S., 2020. "Nonstandard finite difference approximation for a generalized Fins problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 183-191.
    3. Hoang, Manh Tuan, 2022. "Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 32-56.
    4. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
    5. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    6. Arenas, Abraham J. & González-Parra, Gilberto & Chen-Charpentier, Benito M., 2016. "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 48-63.
    7. Mickens, Ronald E., 2005. "A nonstandard finite difference scheme for a PDE modeling combustion with nonlinear advection and diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(5), pages 439-446.
    8. Adamu, Elias M. & Patidar, Kailash C. & Ramanantoanina, Andriamihaja, 2021. "An unconditionally stable nonstandard finite difference method to solve a mathematical model describing Visceral Leishmaniasis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 171-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Manh Tuan, 2022. "Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 32-56.
    2. Hoang, Manh Tuan, 2023. "Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 291-314.
    3. Pasha, Syed Ahmed & Nawaz, Yasir & Arif, Muhammad Shoaib, 2023. "On the nonstandard finite difference method for reaction–diffusion models," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    5. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Higinio Ramos & Shao-Wen Yao & Maryam Molayi, 2022. "Efficient Numerical Solutions to a SIR Epidemic Model," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    6. Iqbal, Zafar & Ahmed, Nauman & Baleanu, Dumitru & Adel, Waleed & Rafiq, Muhammad & Aziz-ur Rehman, Muhammad & Alshomrani, Ali Saleh, 2020. "Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Shah, Kamal & Abdeljawad, Thabet & Ud Din, Rahim, 2022. "To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    8. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Samad Noeiaghdam & Maryam Molayi, 2021. "Nonstandard Finite Difference Schemes for an SIR Epidemic Model," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    9. Mandel, Jan & Bennethum, Lynn S. & Beezley, Jonathan D. & Coen, Janice L. & Douglas, Craig C. & Kim, Minjeong & Vodacek, Anthony, 2008. "A wildland fire model with data assimilation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 584-606.
    10. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    11. Sweilam, N.H. & AL - Mekhlafi, S.M. & Mohamed, D.G., 2021. "Novel chaotic systems with fractional differential operators: Numerical approaches," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Agus Suryanto & Isnani Darti & Syaiful Anam, 2017. "Stability Analysis of a Fractional Order Modified Leslie-Gower Model with Additive Allee Effect," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-9, May.
    14. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
    15. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    16. Hennie Husniah & Ruhanda Ruhanda & Asep K. Supriatna & Md. H. A. Biswas, 2021. "SEIR Mathematical Model of Convalescent Plasma Transfusion to Reduce COVID-19 Disease Transmission," Mathematics, MDPI, vol. 9(22), pages 1-16, November.
    17. Khan, Aziz & Gómez-Aguilar, J.F. & Saeed Khan, Tahir & Khan, Hasib, 2019. "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 119-128.
    18. Tri Nguyen-Huu & Pierre Auger & Ali Moussaoui, 2023. "On Incidence-Dependent Management Strategies against an SEIRS Epidemic: Extinction of the Epidemic Using Allee Effect," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    19. Wen-Jing Zhu & Shou-Feng Shen & Wen-Xiu Ma, 2022. "A (2+1)-Dimensional Fractional-Order Epidemic Model with Pulse Jumps for Omicron COVID-19 Transmission and Its Numerical Simulation," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    20. Xin Jiang, 2021. "Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates," Mathematics, MDPI, vol. 9(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:359-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.