IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v194y2022icp445-459.html
   My bibliography  Save this article

Inertial viscosity-type iterative method for solving inclusion problems with applications

Author

Listed:
  • Adamu, A.
  • Kitkuan, D.
  • Padcharoen, A.
  • Chidume, C.E.
  • Kumam, P.

Abstract

An inertial viscosity-type iterative method that approximates a solution of an inclusion problem and a fixed point problem is introduced and studied. Strong convergence theorem is proved in some Banach spaces. The theorem proved is applied to image restoration, convex minimization and signal processing problems. Finally, numerical illustrations are presented to support the main theorem and its applications.

Suggested Citation

  • Adamu, A. & Kitkuan, D. & Padcharoen, A. & Chidume, C.E. & Kumam, P., 2022. "Inertial viscosity-type iterative method for solving inclusion problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 445-459.
  • Handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:445-459
    DOI: 10.1016/j.matcom.2021.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421004419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Genaro López & Victoria Martín-Márquez & Fenghui Wang & Hong-Kun Xu, 2012. "Forward-Backward Splitting Methods for Accretive Operators in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-25, July.
    2. Songnian He & Caiping Yang, 2013. "Solving the Variational Inequality Problem Defined on Intersection of Finite Level Sets," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, May.
    3. S. Takahashi & W. Takahashi & M. Toyoda, 2010. "Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 27-41, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasanen A. Hammad & Habib ur Rehman & Manuel De la Sen, 2022. "A New Four-Step Iterative Procedure for Approximating Fixed Points with Application to 2D Volterra Integral Equations," Mathematics, MDPI, vol. 10(22), pages 1-26, November.
    2. Zhaoteng Chu & Chenliang Li, 2023. "Overlapping Domain Decomposition Method with Cascadic Multigrid for Image Restoration," Mathematics, MDPI, vol. 11(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasit Cholamjiak & Suparat Kesornprom & Nattawut Pholasa, 2019. "Weak and Strong Convergence Theorems for the Inclusion Problem and the Fixed-Point Problem of Nonexpansive Mappings," Mathematics, MDPI, vol. 7(2), pages 1-19, February.
    2. Cholamjiak, Watcharaporn & Dutta, Hemen, 2022. "Viscosity modification with parallel inertial two steps forward-backward splitting methods for inclusion problems applied to signal recovery," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Chanjuan Pan & Yuanheng Wang, 2019. "Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces," Mathematics, MDPI, vol. 7(2), pages 1-12, February.
    4. Nattakarn Kaewyong & Kanokwan Sitthithakerngkiet, 2021. "Modified Tseng’s Method with Inertial Viscosity Type for Solving Inclusion Problems and Its Application to Image Restoration Problems," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    5. Yonghong Yao & Yeong-Cheng Liou & Ngai-Ching Wong, 2013. "Superimposed optimization methods for the mixed equilibrium problem and variational inclusion," Journal of Global Optimization, Springer, vol. 57(3), pages 935-950, November.
    6. Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    7. Suthep Suantai & Suparat Kesornprom & Prasit Cholamjiak, 2019. "Modified Proximal Algorithms for Finding Solutions of the Split Variational Inclusions," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    8. Lu-Chuan Ceng & Meijuan Shang, 2019. "Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
    9. Mohammad Akram & Mohammad Dilshad & Aysha Khan & Sumit Chandok & Izhar Ahmad, 2023. "Convergence Analysis for Generalized Yosida Inclusion Problem with Applications," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    10. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    11. Suthep Suantai & Kunrada Kankam & Damrongsak Yambangwai & Watcharaporn Cholamjiak, 2022. "A Modified Inertial Parallel Viscosity-Type Algorithm for a Finite Family of Nonexpansive Mappings and Its Applications," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
    12. Peichao Duan & Xubang Zheng & Jing Zhao, 2018. "Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    13. Kim, Jong Kyu & Tuyen, Truong Minh, 2016. "Approximation common zero of two accretive operators in banach spaces," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 265-281.
    14. W. Takahashi, 2013. "Strong Convergence Theorems for Maximal and Inverse-Strongly Monotone Mappings in Hilbert Spaces and Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 781-802, June.
    15. Jenwit Puangpee & Suthep Suantai, 2020. "A New Accelerated Viscosity Iterative Method for an Infinite Family of Nonexpansive Mappings with Applications to Image Restoration Problems," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
    16. Wataru Takahashi, 2020. "A Strong Convergence Theorem under a New Shrinking Projection Method for Finite Families of Nonlinear Mappings in a Hilbert Space," Mathematics, MDPI, vol. 8(3), pages 1-15, March.
    17. Yanlai Song & Mihai Postolache, 2021. "Modified Inertial Forward–Backward Algorithm in Banach Spaces and Its Application," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    18. Kamonrat Sombut & Kanokwan Sitthithakerngkiet & Areerat Arunchai & Thidaporn Seangwattana, 2023. "An Inertial Forward–Backward Splitting Method for Solving Modified Variational Inclusion Problems and Its Application," Mathematics, MDPI, vol. 11(9), pages 1-16, April.
    19. Suthep Suantai & Nontawat Eiamniran & Nattawut Pholasa & Prasit Cholamjiak, 2019. "Three-Step Projective Methods for Solving the Split Feasibility Problems," Mathematics, MDPI, vol. 7(8), pages 1-15, August.
    20. Shamshad Husain & Mohammed Ahmed Osman Tom & Mubashshir U. Khairoowala & Mohd Furkan & Faizan Ahmad Khan, 2022. "Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space," Mathematics, MDPI, vol. 10(17), pages 1-16, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:445-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.