IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i2p156-d204335.html
   My bibliography  Save this article

Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces

Author

Listed:
  • Chanjuan Pan

    (Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
    These authors contributed equally to this work.)

  • Yuanheng Wang

    (Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
    These authors contributed equally to this work.)

Abstract

In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we extend our main results to solve the convex minimization problem. Moreover, the numerical experiments are presented to support the feasibility and efficiency of the proposed method.

Suggested Citation

  • Chanjuan Pan & Yuanheng Wang, 2019. "Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces," Mathematics, MDPI, vol. 7(2), pages 1-12, February.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:156-:d:204335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/2/156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/2/156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.
    2. Genaro López & Victoria Martín-Márquez & Fenghui Wang & Hong-Kun Xu, 2012. "Forward-Backward Splitting Methods for Accretive Operators in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-25, July.
    3. Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
    4. Songnian He & Caiping Yang, 2013. "Solving the Variational Inequality Problem Defined on Intersection of Finite Level Sets," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingnan Jiang & Yuanheng Wang & Jen-Chih Yao, 2021. "Multi-Step Inertial Regularized Methods for Hierarchical Variational Inequality Problems Involving Generalized Lipschitzian Mappings," Mathematics, MDPI, vol. 9(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    2. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    3. Prasit Cholamjiak & Suparat Kesornprom & Nattawut Pholasa, 2019. "Weak and Strong Convergence Theorems for the Inclusion Problem and the Fixed-Point Problem of Nonexpansive Mappings," Mathematics, MDPI, vol. 7(2), pages 1-19, February.
    4. Cholamjiak, Watcharaporn & Dutta, Hemen, 2022. "Viscosity modification with parallel inertial two steps forward-backward splitting methods for inclusion problems applied to signal recovery," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Bing Tan & Shanshan Xu & Songxiao Li, 2020. "Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    6. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    7. Li Wei & Yingzi Shang & Ravi P. Agarwal, 2019. "New Inertial Forward-Backward Mid-Point Methods for Sum of Infinitely Many Accretive Mappings, Variational Inequalities, and Applications," Mathematics, MDPI, vol. 7(5), pages 1-19, May.
    8. Gang Cai & Qiao-Li Dong & Yu Peng, 2021. "Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 447-472, February.
    9. Adamu, A. & Kitkuan, D. & Padcharoen, A. & Chidume, C.E. & Kumam, P., 2022. "Inertial viscosity-type iterative method for solving inclusion problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 445-459.
    10. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    11. Yekini Shehu & Aviv Gibali, 2020. "Inertial Krasnoselskii–Mann Method in Banach Spaces," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    12. Jamilu Abubakar & Poom Kumam & Abdulkarim Hassan Ibrahim & Anantachai Padcharoen, 2020. "Relaxed Inertial Tseng’s Type Method for Solving the Inclusion Problem with Application to Image Restoration," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    13. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    14. Nattakarn Kaewyong & Kanokwan Sitthithakerngkiet, 2021. "Modified Tseng’s Method with Inertial Viscosity Type for Solving Inclusion Problems and Its Application to Image Restoration Problems," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    15. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    16. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    17. Suthep Suantai & Suparat Kesornprom & Prasit Cholamjiak, 2019. "Modified Proximal Algorithms for Finding Solutions of the Split Variational Inclusions," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    18. Lu-Chuan Ceng & Meijuan Shang, 2019. "Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
    19. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    20. Suthep Suantai & Kunrada Kankam & Damrongsak Yambangwai & Watcharaporn Cholamjiak, 2022. "A Modified Inertial Parallel Viscosity-Type Algorithm for a Finite Family of Nonexpansive Mappings and Its Applications," Mathematics, MDPI, vol. 10(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:156-:d:204335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.