IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v147y2010i1d10.1007_s10957-010-9713-2.html
   My bibliography  Save this article

Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces

Author

Listed:
  • S. Takahashi

    (Yokohama Publishers)

  • W. Takahashi

    (Tokyo Institute of Technology
    National Sun Yat-sen University)

  • M. Toyoda

    (Tamagawa University)

Abstract

Let C be a closed and convex subset of a real Hilbert space H. Let T be a nonexpansive mapping of C into itself, A be an α-inverse strongly-monotone mapping of C into H and let B be a maximal monotone operator on H, such that the domain of B is included in C. We introduce an iteration scheme of finding a point of F (T)∩(A+B)−10, where F (T) is the set of fixed points of T and (A+B)−10 is the set of zero points of A+B. Then, we prove a strong convergence theorem, which is different from the results of Halpern’s type. Using this result, we get a strong convergence theorem for finding a common fixed point of two nonexpansive mappings in a Hilbert space. Further, we consider the problem for finding a common element of the set of solutions of a mathematical model related to equilibrium problems and the set of fixed points of a nonexpansive mapping.

Suggested Citation

  • S. Takahashi & W. Takahashi & M. Toyoda, 2010. "Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 27-41, October.
  • Handle: RePEc:spr:joptap:v:147:y:2010:i:1:d:10.1007_s10957-010-9713-2
    DOI: 10.1007/s10957-010-9713-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9713-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9713-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Takahashi & M. Toyoda, 2003. "Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 118(2), pages 417-428, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jong Kyu & Tuyen, Truong Minh, 2016. "Approximation common zero of two accretive operators in banach spaces," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 265-281.
    2. Prasit Cholamjiak & Suparat Kesornprom & Nattawut Pholasa, 2019. "Weak and Strong Convergence Theorems for the Inclusion Problem and the Fixed-Point Problem of Nonexpansive Mappings," Mathematics, MDPI, vol. 7(2), pages 1-19, February.
    3. W. Takahashi, 2013. "Strong Convergence Theorems for Maximal and Inverse-Strongly Monotone Mappings in Hilbert Spaces and Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 781-802, June.
    4. Mohammad Akram & Mohammad Dilshad & Aysha Khan & Sumit Chandok & Izhar Ahmad, 2023. "Convergence Analysis for Generalized Yosida Inclusion Problem with Applications," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    5. Wataru Takahashi, 2020. "A Strong Convergence Theorem under a New Shrinking Projection Method for Finite Families of Nonlinear Mappings in a Hilbert Space," Mathematics, MDPI, vol. 8(3), pages 1-15, March.
    6. Mohammad Akram & Mohammad Dilshad & Arvind Kumar Rajpoot & Feeroz Babu & Rais Ahmad & Jen-Chih Yao, 2022. "Modified Iterative Schemes for a Fixed Point Problem and a Split Variational Inclusion Problem," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    7. Yonghong Yao & Yeong-Cheng Liou & Ngai-Ching Wong, 2013. "Superimposed optimization methods for the mixed equilibrium problem and variational inclusion," Journal of Global Optimization, Springer, vol. 57(3), pages 935-950, November.
    8. Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    9. Adamu, A. & Kitkuan, D. & Padcharoen, A. & Chidume, C.E. & Kumam, P., 2022. "Inertial viscosity-type iterative method for solving inclusion problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 445-459.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
    2. Yanlai Song & Luchuan Ceng, 2013. "A general iteration scheme for variational inequality problem and common fixed point problems of nonexpansive mappings in q-uniformly smooth Banach spaces," Journal of Global Optimization, Springer, vol. 57(4), pages 1327-1348, December.
    3. S. Plubtieng & T. Thammathiwat, 2010. "A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities," Journal of Global Optimization, Springer, vol. 46(3), pages 447-464, March.
    4. A. Tada & W. Takahashi, 2007. "Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 359-370, June.
    5. Z. Y. Huang & M. A. Noor & E. Al-Said, 2010. "On an Open Question of Takahashi for Nonexpansive Mappings and Inverse Strongly Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 194-204, October.
    6. Lili Chen & Ni Yang & Jing Zhou, 2020. "Common Attractive Points of Generalized Hybrid Multi-Valued Mappings and Applications," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
    7. W. Takahashi, 2013. "Strong Convergence Theorems for Maximal and Inverse-Strongly Monotone Mappings in Hilbert Spaces and Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 781-802, June.
    8. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    9. Maryam Yazdi & Saeed Hashemi Sababe, 2024. "A New Extragradient-Viscosity Method for a Variational Inequality, an Equilibrium Problem, and a Fixed Point Problem," Mathematics, MDPI, vol. 12(22), pages 1-19, November.
    10. Yuanheng Wang & Mingyue Yuan & Bingnan Jiang, 2021. "Multi-Step Inertial Hybrid and Shrinking Tseng’s Algorithm with Meir–Keeler Contractions for Variational Inclusion Problems," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
    11. Vasile Berinde, 2024. "A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
    12. Lu-Chuan Ceng & Chang-yu Wang & Jen-Chih Yao, 2008. "Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(3), pages 375-390, June.
    13. Habtu Zegeye & Naseer Shahzad, 2012. "Strong convergence of an iterative method for pseudo-contractive and monotone mappings," Journal of Global Optimization, Springer, vol. 54(1), pages 173-184, September.
    14. Xiaolong Qin & Lai-Jiu Lin & Shin Min Kang, 2011. "On a Generalized Ky Fan Inequality and Asymptotically Strict Pseudocontractions in the Intermediate Sense," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 553-579, September.
    15. L. Zeng & J. Yao, 2009. "A hybrid extragradient method for general variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 141-158, March.
    16. Z. Y. Huang & M. A. Noor, 2012. "Studies on Common Solutions of a Variational Inequality and a Fixed-Point Problem," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 525-535, August.
    17. Vahid Darvish, 2016. "Strong convergence theorem for a system of generalized mixed equilibrium problems and finite family of Bregman nonexpansive mappings in Banach spaces," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 584-603, September.
    18. Xiaolong Qin & Sun Cho & Shin Kang, 2011. "An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings," Journal of Global Optimization, Springer, vol. 49(4), pages 679-693, April.
    19. Suthep Suantai & Narin Petrot & Montira Suwannaprapa, 2019. "Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces," Mathematics, MDPI, vol. 7(11), pages 1-21, October.
    20. Lu-Chuan Ceng & Nicolas Hadjisavvas & Ngai-Ching Wong, 2010. "Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems," Journal of Global Optimization, Springer, vol. 46(4), pages 635-646, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:147:y:2010:i:1:d:10.1007_s10957-010-9713-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.