IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v192y2022icp420-429.html
   My bibliography  Save this article

Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function

Author

Listed:
  • Tang, Xiaosong

Abstract

In present article, under homogeneous Neumann boundary condition, we put forward a diffusive spruce budworm model with mixed delays and Holling II predation function firstly. Then, choosing delay (discrete delay or distributed delay) as bifurcating parameter together with characteristic equation, we derive that not only can discrete delay induce the appearance of Hopf bifurcations for this model, but also distributed delay can do it. However, to our knowledge, in the known literatures, Hopf bifurcation can only be deduced by discrete delay or distributed delay. So, the obtained results in present article are new. At last, by carrying out numerical simulations, we obtain periodic solutions and spatial patterns deduced by discrete delay or distributed delay, which illustrates the results in this article.

Suggested Citation

  • Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
  • Handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:420-429
    DOI: 10.1016/j.matcom.2021.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421003360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Xiaosong & Song, Yongli, 2015. "Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 375-391.
    2. Li, Li & Wang, Zhen & Li, Yuxia & Shen, Hao & Lu, Junwei, 2018. "Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 152-169.
    3. Cao, Yang, 2019. "Bifurcations in an Internet congestion control system with distributed delay," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 54-63.
    4. Yang, Yu & Ye, Jin, 2009. "Hopf bifurcation in a predator–prey system with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 554-559.
    5. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    6. Yu, Jinchen & Peng, Mingshu, 2016. "Stability and bifurcation analysis for the Kaldor–Kalecki model with a discrete delay and a distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 66-75.
    7. Duan, Daifeng & Niu, Ben & Wei, Junjie, 2019. "Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 206-216.
    8. Kaslik, Eva & Neamţu, Mihaela, 2020. "Dynamics of a tourism sustainability model with distributed delay," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che, Han & Wang, Yu-Lan & Li, Zhi-Yuan, 2022. "Novel patterns in a class of fractional reaction–diffusion models with the Riesz fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 149-163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Peng, Miao & Zhang, Zhengdi & Qu, Zifang & Bi, Qinsheng, 2020. "Qualitative analysis in a delayed Van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    4. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    5. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    6. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    7. Ma, Tingting & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2021. "Stability analysis and optimal harvesting control of a cross-diffusion prey-predator system," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    9. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    10. Bilazeroğlu, Ş. & Göktepe, S. & Merdan, H., 2023. "Effects of the random walk and the maturation period in a diffusive predator–prey system with two discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    12. Kim, Sangkwon & Park, Jintae & Lee, Chaeyoung & Jeong, Darae & Choi, Yongho & Kwak, Soobin & Kim, Junseok, 2020. "Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Giraud, Gaël & Grasselli, Matheus, 2021. "Household debt: The missing link between inequality and secular stagnation," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 901-927.
    14. Wenjie Hu & Hua Zhao & Tao Dong, 2018. "Dynamic Analysis for a Kaldor–Kalecki Model of Business Cycle with Time Delay and Diffusion Effect," Complexity, Hindawi, vol. 2018, pages 1-11, January.
    15. Hao, Zhang & Xing-yuan, Wang & Peng-fei, Yan & Yu-jie, Sun, 2020. "Combination synchronization and stability analysis of time-varying complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    16. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2021. "Stability and bifurcation analysis of a fractional predator–prey model involving two nonidentical delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 562-580.
    17. Wang, Zhizhi & Hu, Bing & Zhou, Weiting & Xu, Minbo & Wang, Dingjiang, 2023. "Hopf bifurcation mechanism analysis in an improved cortex-basal ganglia network with distributed delays: An application to Parkinson’s disease," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Yang, Te & Chen, Guoliang & Xia, Jianwei & Wang, Zhen & Sun, Qun, 2019. "Robust H∞ filtering for polytopic uncertain stochastic systems under quantized sampled outputs," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 688-701.
    19. Chen, Jianxin & Zhang, Tonghua & Zhou, Yongwu, 2020. "Dynamics of a risk-averse newsvendor model with continuous-time delay in supply chain financing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 133-148.
    20. Han, Renji & Dai, Binxiang, 2017. "Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 177-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:420-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.